翔鹰帝国网|帝国时代论坛|帝国时代系列|神话时代
 找回密码
 注册翔鹰会员(昵称)
搜索
查看: 2855|回复: 2

[转帖]物理名人大集合

[复制链接]

36

主题

0

精华

77

积分

骑士

耕战
-2
鹰币
1
天龙币
0
回帖
247
附庸关系0
发表于 2005-8-6 20:50:03 | 显示全部楼层 |阅读模式

物理的名人,让你一一了解!


牛顿生平

  牛顿,伟大的英国物理学家,1642年12月25日生于林肯郡伍尔索普村的一个农民家庭。12岁他在格兰撒姆的公立学校读书时,就表现了对实验和机械发明的兴趣,自己动手制作了水钟、风磨和日晷等。1661年,牛顿就读于剑桥大学的三一学院,成了一名优秀学生。1669年,年仅27岁,就担任了剑桥的数学教授。1672年当选为英国皇家学会会员。

1685~1687年,在天文学家哈雷的鼓励和赞助下,牛顿发表了著名的《自然哲学的数学原理》,完成了具有历史意义的的发现——运动定律和万有引力定律,对近代自然科学的发展,做出了重大贡献。1703年,当选为英国皇家学会会长。1727年3月27日,逝世于伦敦郊外的一个小村落里。

牛顿不仅对于力学,在其它方面也有很大贡献。在数学方面,他发现了二项式定理,创立了微积分学;在光学方面,进行了太阳光的色散实验,证明了白光是由单色光复合而成的研究了颜色的理论,还发明了反射望远镜。

小笨蛋还是小神童?


小笨蛋?
  阿尔伯特.爱因斯坦(Albert.Einstein)1897年3月14日出生在德国西南距离慕尼黑八十五哩的乌耳姆城(Ulm)。父母都是犹太人。父亲赫尔曼.爱因斯坦和叔叔雅各布.爱因斯坦合开了一个制造电器设备的小工厂。母亲玻琳是受过中等教育的家庭妇女,非常喜欢音乐,在小爱因斯坦六岁时就教导他拉小提琴。这是一个和睦、愉快的家庭。亲人们深爱着小爱因斯坦,但都为他的智力发育感到担忧。爱因斯坦小时候并不活泼,三岁多还不会讲话,父母很担心他是哑巴,带他去给医生检查。还好小爱因斯坦不是哑巴可是直到九岁时讲话还不很通畅,所讲的每一句话都必须经过吃力但认真的思考。小爱因斯坦是一个诚实的孩子,从不做违心的或骗人的事。为此,他受到同学们的讥笑,给他起了一个绰号叫“诚实的约翰”。普通孩子喜欢玩带有竞争性的游戏,可是他却不喜欢参加。孩子喜欢打仗的游戏,喜欢看士兵操练,但是他却从小到大不喜欢任何和军事有关的东西。他是一个不想看到人类互相残杀的和平主义者。

  爱因斯坦家的住房周围有花园,他经常一个人长时间地蹲在花园角落的灌木丛里,用手抚摩着小叶片或者凝视着匆匆跑动的蚂蚁。他很小就喜欢冥想,想了解大自然的奥秘。一次,在依萨尔河岸野餐时,一位亲戚说,小爱因斯坦很严肃,当其他的孩子都在互相玩耍、逗乐时,他却独自坐着看湖的对岸。母亲玻琳深情的为自己的孩子辩护:“他是沉静的,因为他在思索。等着吧,总有一天他会成为一个教授!”那位亲戚感到可笑,但也理解母亲的心情。教授!在人们的心目中,只有那些聪敏的人才有可能得到这个荣誉的称号,这个连话都说不好的笨孩子能成为一个教授吗?

  在四、五岁时,爱因斯坦有一次卧病在床,父亲送给他一个罗盘。当他发现指南针不断地指着固定的方向时,感到非常惊奇,觉得一定有什么东西深深地隐藏在这现象后面。他一连几天很高兴的玩这罗盘,还纠缠着父亲和雅各布叔叔问了一连串问题。尽管他连“磁”这个词都说不好,但他却顽固地想要知道指南针为什么能指南。这种深刻和持久的印象,爱因斯坦直到六十七岁还能鲜明的回忆出来。

  爱因斯坦在念小学和中学时,一般功课属平常,唯有数学成绩远在全班同学之上。由于他举止缓慢,不爱同人交往,老师和同学都不喜欢他。教他希腊文和拉丁文的老师对他是那么厌恶,曾经公开骂他:“爱因斯坦,你长大后肯定不会成器。”而且因为怕他在课堂上会影响其他学生,竟想把他赶出校门。

小神童?

  爱因斯坦的叔叔雅各布在电器工厂里专门负责技术方面的事务,而爱因斯坦的父亲则负责商业的往来。雅各布是一个工程师,自己就非常喜爱数学,当小爱因斯坦来找他问问题时,他总是用很浅显通俗的语言把数学知识介绍给他。

  有一天爱因斯坦跑来问叔叔:“什么是代数”?叔叔就这样解释:“在算术中有很多问题不容易解决,要算又很难。而代数是一门‘快乐’的数学,能很容易的帮人们解答困难的计算。我们把我们不知道的数叫着X,然后来捕捉它。你把它当作已知道的东西,建立一些关系,最后你就可以容易地得到它了。”然后叔叔给了他一本有代数问题的小册子,爱因斯坦很快就学会了解决里面的问题。   有一次雅各布叔叔给他讲了几何中一个很美丽的定理──毕达哥拉斯定理:任何直角三角形的长边平方一定等于两短边平方的和。叔叔没有告诉他这个定理的证明,但是爱因斯坦在画了许多直角三角形后发现这关系一直成立,感到非常的惊奇。

  父亲的生意做得并不好,但却是一个乐观和心地善良的人,家里每星期都有一个晚上要邀请来慕尼黑念书的穷学生吃饭,这样等于是救济他们。其中有一对来自立陶宛的犹太兄弟麦克斯和伯纳德,他们都是学医科的,都喜欢阅读书籍,兴趣广泛。他们被邀请来爱因斯坦家里吃饭,并和羞答答、长着黑头发和棕色眼睛的小爱因斯坦交成了好朋友。   麦克斯可以说是爱因斯坦的“启蒙老师”,他借了一些通俗的自然科学普及读物给他看,看完后就和爱因斯坦讨论,并且再继续提供给他新的读物。麦克斯点燃了爱因斯坦自学的兴趣火花,还不断地辅导他。

  麦克斯在爱因斯坦十二岁时给了他一本施皮尔克的平面几何教科书,一下子攫取了爱因斯坦的心灵。爱因斯坦晚年时回忆这本神圣的小书时说:“这本书里有许多断言,比如,三角形的三个高交于一点,它们本身虽然并不是显而易见的,但是可以很可靠地加以证明,以致任何怀疑似乎都不可能。这种明晰性和可靠性给我造成了一种难以形容的印象。”   这时爱因斯坦又想起了毕达哥拉斯定理,于是想要**证明这个定理。他花了三个星期最后找到一个方法,就是从直角三角形最长边所面对的顶点作这边的垂直线,于是把三角分成相似三角形,由此很容易证明这个定理。虽然这是一个古老得有二千多年历史的定理,但是爱因斯坦经过一番努力总算得到了结果,他第一次体会到科学发现时的欣喜。

  麦克斯每星期来时,都会帮他改一些习题,并且辅导他作一些较难的问题。过不久又引导他学习高等数学,十三岁时他已自学微积分了。当他的同班同学为那些平面几何简单问题和循环分数而皱眉头时,爱因斯坦靠自学已经进入到无穷级数这些美丽神奇的“无穷世界”去了。   很快小爱因斯坦的数学程度超过了读大学的麦克斯,比他大十一岁的医科大学生再也跟不上这个十二、三岁的小孩子了。为了以后有共同谈话的话题,麦克斯开始借哲学书给他看,爱因斯坦在十三岁就能看懂康德的《纯理性批判》。这是一本对许多成人来说都算是枯燥艰深的书。这时候爱因斯坦阅读的书就是数学、物理和许多哲学家的书。他不看小说,唯一的消遣就是拉小提琴。

麦克斯认为他已发现了一个神童,他说:“一个伟大的科学家或哲学家,将从爱因斯坦身上成长起来。”






安 培
 安培(Ampére,André-Marie,1775—1836)是法国物理学家、数学家.1775年1月22日生于里昂一个商人家庭.父亲为他安排了按照自己的意愿来学习的环境.他自幼聪明好学,具有惊人的记忆力,尤其是在数学方面有非凡的天赋.12岁学习了微积分,13岁发表关于螺旋线的论文.18岁时,除了拉丁语,还通晓意大利语和希腊语.他不仅钻研数学,还研究物理学和化学.在化学方面,他最先预见了氯、氟、碘三种物质是元素,还**地发现了“阿伏伽德罗定律”.?

  安培最重要的贡献是在电磁学方面.1820年7月奥斯特发现了电流的磁效应.法国科学家阿拉果8月在瑞士听到这一消息后,9月初回到法国立即向法国科学院报告了这一最新发现.善于接受新的研究成果的安培,怀着极大的兴趣,第二天就重做了奥斯特的实验,并于9月18日向法国科学院提交了第一篇论文,报告他的实验成果.接着又在9月25日、10月9日提出了第二篇和第三篇实验报告论文.在这三篇论文中,包括了电流方向和磁针偏转方向关系的右手定则;同向直线电流间互相吸引,异向直线电流间互相排斥;通电螺线管的磁性与磁针等效,等等.安培又用了二、三个月的时间进一步研究电流之间的相互作用,把精巧的实验和他高超的数学技巧结合起来,通过四个巧妙设计的实验,得出了重要的结论,这就是:导线中的电流反向时,它们产生的作用也反向;电流元具有矢量性,作用在电流元上的力跟电流元垂直;电流元的长度和相互间的距离增加相同的倍数时,作用力不改变.安培根据这四个实验,导出了两个电流元之间相互作用的公式,即两个电流元之间的作用力跟它们之间距离的平方成反比,这就是著名的安培定律.

  安培还进一步探索了磁的本质,提出了分子电流假说,为正确认识物质磁性指出了方向.安培把磁和电流联系起来,从本质上认识了磁和电的统一.

  安培精湛的实验技巧和探索根源的精神受到后人的称颂,他在电磁学方面的重要贡献被麦克斯韦誉为“电学中的牛顿”.








奥斯特

 
  丹麦物理学家奥斯特(Hans Christian Oersted,1777—1851)1777年8月14日生于丹麦朗格兰德岛一个药剂师家庭.12岁开始帮助父亲在药房里干活,同时坚持学习化学.由于刻苦攻读,17岁以优异的成绩考取了哥本哈根大学的免费生.他一边当家庭教师,一边在学校学习药物学、天文、数学、物理、化学等.1806年任哥本哈根大学物理学教授,1821年被选为英国皇家学会会员,1823年被选为法国科学院院士,后来任丹麦皇家科学协会会长.

  奥斯特早在读大学时就深受康德哲学思想的影响,认为各种自然力都来自同一根源,可以相互转化.富兰克林发现的莱顿瓶放电使钢针磁化的现象,对奥斯特启发很大,他认识到电向磁的转化不是不可能的,关键是要找出转化的具体条件.他在1812年出版的《关于化学力和电力的统一性的研究》中,根据电流流经直径较小的导线会发热,推测如果通电导线的直径进一步缩小,那么导线就会发光;使通电导线的直径变得更小,小到一定程度时,电流就会产生磁效应.他指出:“我们应该检验电是否以其最隐蔽的方式对磁体有所影响.”寻找这两大自然力之间联系的思想,经常盘绕在他的头脑中.?

  1819年冬,奥斯特在哥本哈根开设了一个讲座,讲授电磁学方面的课题.在备课中,奥斯特分析了前人在电流方向上寻找磁效应都未成功的事实,想到磁效应可能像电流通过导线产生热和光那样是向四周散射的,即是一种横向力,而不是纵向的.1820年春,奥斯特安排了一个这方面的实验,他采用讲演时常用的电池槽,让电流通过一根很细的铂丝,把一个带玻璃罩的指南针放在铂丝下面,实验没有取得明显的效果.1820年4月的一天晚上,奥斯特在讲课中突然出现了一个想法,讲课快结束时,他说:让我把导线与磁针平行放置来试试看.当他接通电源时,他发现小磁针微微动了一下.这一现象使奥斯特又惊又喜,他紧紧抓住这一现象,连续进行了3个月的实验研究,终于在1820年7月21日发表了题为《关于磁针上的电流碰撞的实验》的论文.这篇仅用了4页纸的论文,是一篇极其简洁的实验报告.奥斯特在报告中讲述了他的实验装置和60多个实验的结果,从实验总结出:电流的作用仅存在于载流导线的周围;沿着螺纹方向垂直于导线;电流对磁针的作用可以穿过各种不同的介质;作用的强弱决定于介质,也决定于导线到磁针的距离和电流的强弱;铜和其他一些材料做的针不受电流作用;通电的环形导体相当于一个磁针,具有两个磁极,等等.?

  奥斯特发现的电流磁效应,是科学史上的重大发现.它立即引起了那些懂得它的重要性和价值的人们的注意.在这一重大发现之后,一系列的新发现接连出现.两个月后安培发现了电流间的相互作用,阿拉果制成了第一个电磁铁,施魏格发明电流计等.安培曾写道:“奥斯特先生……已经永远把他的名字和一个新纪元联系在一起了.”奥斯特的发现揭开了物理学史上的一个新纪元.   奥斯特不只是一位著名的物理学家,还是一位优秀的教师.他的讲课有表演,有分析.他非常重视实验,他说过“我不喜欢那种没有实验的枯燥的讲课,因为归根到底,所有的科学进展都是从实验开始的.”







法拉第



  迈克尔·法拉第(Michael Faraday,1791—1867)是19世纪电磁学领域中最伟大的实验物理学家.他于1791年9月22日生于伦敦附近的纽因格顿,父亲是铁匠.由于家境贫苦,他只在7岁到9岁读过两年小学.12岁当报童,13岁在一家书店当了装订书的学徒.他喜欢读书,利用在书店的条件,读了许多科学书籍,并动手做了一些简单的化学实验.

  1812年秋,法拉第有机会听了著名化学家戴维的四次讲演,激起对科学研究的极大兴趣.他把戴维的讲演精心整理并附上插图后寄给戴维,希望戴维帮助他实现科学研究的愿望.1813年3月,戴维推荐法拉第到皇家研究院实验室作了自己的助理实验员.1813年10月,法拉第跟随戴维到欧洲大陆进行学术考察18个月.在这期间他有机会参观了各国科学家的实验室,结交了安培、盖·吕萨克等著名科学家,了解了他们的科学研究方法.回到英国后,法拉第就开始了**的研究工作,并于1816年发表了第一篇化学论文,以后又接连发表了几篇.

  1820年奥斯特发现电流的磁效应,受到科学界的关注,促进了科学的发展.1821年英国《哲学年鉴》的主编约请戴维撰写一篇文章,评述奥斯特发现以来电磁学实验的理论发展概况.戴维把这一工作交给了法拉第.法拉第在收集资料的过程中,对电磁现象的研究产生了极大的热情,并开始转向电磁学的研究.他仔细地分析了电流的磁效应等现象,认为既然电流能产生磁,磁能否产生电呢?1822年他在日记中写下了自己的思想:“磁能转化成电”.他在这方面进行了系统的研究.起初,他试图用强磁铁靠近闭合导线或用强电流使另一闭合导线中产生电流,做了大量的实验,都失败了.经过历时十年的失败、再试验,直到1831年8月29日才取得成功.他接连又做了几十个这类实验.1831年11月24日的论文中,他把产生感应电流的情况概括成五类:变化着的电流;变化着的磁场;运动的恒定电流;运动的磁场;在磁场中运动的导体.他指出:感应电流与原电流的变化有关,而不是与原电流本身有关.他将这一现象与导体上的静电感应类比,把它取名为“电磁感应”.为了解释电磁感应现象,法拉第曾提出过“电张力”的概念.后来在考虑了电磁感应的各种情况后,认为可以把感应电流的产生归因于导体“切割磁力线”.在电磁感应现象发现二十年后,直到1851年才得出了电磁感应定律.

  1833年到1834年,法拉第从实验得出了电解定律,这是电荷不连续性的最早的有力证据.

  法拉第的另一贡献是提出了场的概念.他反对超距作用的说法,设想带电体、磁体周围空间存在一种物质,起到传递电、磁力的作用,他把这种物质称为电场、磁场.1852年,他引入了电力线(即电场线)、磁力线(即磁感线)的概念,并用铁粉显示了磁棒周围的磁力线形状.场的概念和力线的模型,对当时的传统观念是一个重大的突破.

  法拉第从近距作用的物理图景出发,还预见了电、磁作用传播的波动性和它们传播的非瞬时性.他在1832年3月12日写给英国皇家学会的一封密封信中,信封上写着“现在应当收藏在皇家学会档案馆里的一些新观点”,这封信直到1938年才启封公布,信中法拉第说明了他的上述新观点.表现了法拉第深邃的物理洞察力和深刻的物理思想.   法拉第把他做过的实验整理成《电学实验研究》一书,书中收集了三千多个条目,详细记述了他做过的实验和结论,是一本珍贵的科学文献.

  法拉第是靠自学成才的科学家,在科学的征途上辛勤奋斗半个多世纪,不求名利.1825年,他参与冶炼不锈钢材和折光性能良好的重冕玻璃工作,不少公司和厂家出重金聘请法拉第为他们的技术顾问.面对15万镑的财富和没有报酬的学问,法拉第选择了后者.1851年,法拉第被一致推选为英国皇家学会会长,他也坚决推辞掉了这个职务.把全身心献给了科学研究事业,终生过着清贫的日子.

  1855年他从皇家学院退休.1867年8月25日在伦敦去世.遵照他“一辈子当一个平凡的迈克尔·法拉第”的意愿,遗体被安葬在海格特公墓.为了纪念他,用他的名字命名电容的单位——法拉.
十九世纪最伟大的光学家—菲涅尔 
早逝的英才
  菲涅耳于1788年出生在诺曼底省的布罗格利,当时法国革命即将爆发。他的父亲是一位建筑家,他的母亲是梅里美家族的成员。这个家族由于她的兄弟莱翁诺而著名。他是一位名画家,他的儿子即菲涅耳的表兄弟普罗斯佩.美是一位著名的文学家,他的短篇小说《卡门》是著名歌剧的主题,由此使得人们永远怀念他。  菲涅耳和他在光学上的主要竞争对手托马斯.杨不同,他智力发展较迟,对语言研究也不擅长。但在九岁时,菲涅耳开始显露出了非凡的技术才能,他依据科学原理制成了一种玩具枪、弓和箭。他的身体不太好,但十六岁时就进入理工学校学习,然后又从那里转到了土木工程学校。他在**里任工程师,在法国各省修建道路和桥梁。在与科学界完全隔绝的情况下,他在那里开始把研究光的性质作为一种业余爱好。1814年他给他最亲密的兄弟莱翁诺写了一封信,要求给他买一些能用来学习光偏振的书籍。他毫不怀疑,他最后必将写出他想要读的书。  1815年拿破仑从厄尔巴岛回到了法国,他是在前一年战败后被欧洲列强关禁在岛上的。于是一股热情的狂潮震撼着整个法国,同时也受到了拿破仑反对者同样强烈情绪的抵制。菲涅耳是反对拿破仑的人物之一,为此重建的百日帝国革除了他的职务,先后把他送到了尼翁和马蒂厄村关禁起来。由于滑铁卢之战后波旁家族第二次回来掌权,菲涅耳才在1815年底恢复了积极的活动。  然而就在这几个月内菲涅耳已经开始了好几项足以引起光学革命的研究。他观察了来自一个半平面的衍射,并依靠他的数学技巧,把周期振动概念与惠更斯原理的精确表述结合起来,对衍射现象提出了一个细致的理论。菲涅耳设法离开了他的禁闭地点,到巴黎去拜访了阿拉戈,当时著名的科学家。阿拉戈立即发现了他的才能。不幸的是,阿拉戈不得不坦率地告诉他,他得到的结果在很大程度上已由杨占先了。但是,菲涅耳的工作更为详细和定量化,它有着足够的创新性,因而可以在科学院院刊上发表。在这篇论评文发表后不久,他接着又发表了同一课题的第二篇论文。阿拉戈和以研究陀螺仪著名的数学家普安索被指定为菲涅耳论文的审查人。他们从菲涅耳的上司那里为他得到了一个假期。以便他利用阿拉戈的实验设备在巴黎研究几个月。
  菲涅耳在马蒂厄进行研究时得到一个乡村铁匠的帮助,制造出一些实验工具来使用,但衍射现象的研究却需要清密的机械工具,例如测微计、狭缝等,他没有别人的帮助是难以制造出来的。这之后,菲涅耳从衍射现象的研究转到了薄片颜色的研究。在这方面,杨依然是走在前面的佼佼者。1818年被阿拉戈和拉普拉斯引荐参加法国灯塔照明改组委员会。1823年被吸收为巴黎科学院院士,1827年获伦敦皇家学院伦福德奖章。他依靠微薄的收入维持自己的科学研究工作。只是到了1823年才得到承认被选入法国科学院,用于科学研究上的债务才得以偿清,但他的健康已受到很大损害。1824年因大出血而不得不终止了一切科学活动。菲涅耳于1827年因肺病卒于巴黎附近的阿弗雷城,终年三十九岁。  菲涅耳一生是一个非常虔诚的人,富有冉森教派的宗教思想。他也有点害羞。他在这与给兄弟的一封信中说,“我很难发现有任何事如应酬人们那样痛苦的了,我坦白承认,我真不知道如何去应酬他们。”

菲涅耳的光学成就
  1815年,菲涅耳向科学院提交了关于光的衍射的第一份研究报告,这时他还不知道托马斯.扬关于衍射的论文。菲涅耳以光波干涉的思想补充了惠更斯原理,认为在各子波的包络面上,由于各子波的互相干涉而使合成波具有显著的强度,这给予惠更斯原理以明确的物理意义。但同托马斯.杨所认为的衍射是由直射光束与边缘反射光束的干涉形成的看法相反,菲涅耳认为屏的边缘不会发生反射。阿拉戈热情地报告了这篇论文,并第一个改信了波动说。  但是,波动说在解释偏振光的干涉现象上还存在着很大的困难。牛顿在《光学》疑问26中曾经问道:“光线不是有几个边缘,它们各有一些原来的性质吗?”是双折射现象引起了这一疑问。菲涅耳和阿拉戈总结了偏振光的干涉规律,发现两束偏振光当它们的反射面互相平行时可以发生干涉;但当反射面互相垂直时,干涉现象就消失。就是说,两束互相垂直的偏振的光线,彼此不发生干涉作用,而原来偏振方向相同的两束光,就好象寻常光线一样地可以发生干涉。  1817年,一直在为波动说的困难寻找解决办法的托马斯.杨觉察出,如果光的振动不是象声波那样沿运动方向作纵向振动,而是象水波或拉紧的琴弦那样垂直于运动方向作横向振动,问题或许可以得到解决。1817年初,杨写信给阿拉戈说:“……虽然波动说可以解释横向振动也在径向方向并以相等速度传播,但粒子的运动是在相对于径向的某个恒定方向上,而这就是偏振。”阿拉戈立即将托马斯.杨的这一新想法告诉了菲涅耳,菲涅耳当时已经**地领悟到了这个思想,他立即以这一假设解释了偏振光的干涉的定律,而且还得出了一系列其他的重要结论,其中包括偏振面转动理论,反射和折射理论,双折射理论。但是,光振动是横向的这个假设是非常大胆的,因为根据弹性理论,在稀薄的以太里是不可能产生横向振动的。所以,阿拉戈虽然和菲涅耳一起进行了关于偏振光干涉的研究,而当菲涅耳用横波观点对实验结果进行解释时,阿拉戈却不敢和他一起发表这个新见解。论文的这一部分是以菲涅耳的名义表达的。  后来,菲涅耳把所有观察的结果总结成为一个完整的偏振光理论,其中包括相干概念和椭圆偏振。他发现了晶体中的波面,和支配反射光与折射光强度的定律。所有这些都是一些重大成就,由此建立了尚待解释的现象学。观察在真空内传播光的媒质―以太的性质,这本应是最大的成就。但是菲涅耳在这里遇到了不可克服的困难。  1818年,法国科学院提出了征文竞赛题目:一是,利用精确的实验定光线的衍射效应;二是,根据实验,用数学归纳法推求出光线通过物体附近时的运动情况。在阿拉戈的鼓励与支持下,菲涅耳向科学院提出了应征论文,他从横波观点出发,圆满地解释了光的偏振,用半周带的方法定量地计算了圆孔、圆板等形状的障碍物产生的衍射花纹,而且与实验符合得很好。但是,菲涅耳的波动理论遭到了光的粒子说者的反对,评奖委员会的成员泊松运用菲涅耳的方程推导出关于盘衍射的一个奇怪的结论:如果这些方程是正确的,那么当把一个小圆盘放在光束中时,就会在小圆盘后面一定距离处的屏幕上盘影的中心点出现一个亮斑;泊松认为这当然是十分荒谬的,所以他宣称已经驳倒了波动理论。菲涅耳和阿拉戈接受了这个挑战,立即用实验检验了这个理论预言,非常精彩地证实了这个理论的结论,影子中心的确出现了一个亮斑。在托马斯.杨的双缝干涉和泊松亮斑的事实的确证下,光的粒子说开始崩溃了。  菲涅耳的研究成果,标志着光学进入了一个新时期―弹性以太光学的时期。这个学说的成功,在牛顿物理学中打开了第一个缺口,为此他被人们称为“物理光学的缔造者”。








富兰克林
  
  If you would not be forgotten, as soon as you are dead or rotten, either write things worth reading, or do things worth writing.
                          ——Benjamin.Franklin

如果你不想在死后被人遗忘,就写一些值得人们读的事,或者就做一些值得人们写的事吧!

                          ——本杰明.富兰克林

  本杰明.富兰克林——资本主义精神最完美的代表,十八世纪美国最伟大的科学家,著名的政治家和文学家。他一生最真实的写照是他自己所说过的一句话“诚实和勤勉,应该成为你永久的伴侣。”

学习一生
  1706年1月17日,本杰明.富兰克林出生在北美州的波士顿。他的父亲原是英国漆匠,当时以制造蜡烛和肥皂为业,生有十个孩子,富兰克林排行第八。富兰克林八岁入学读书,虽然学习成绩优异,但由于他家中孩子太多,父亲的收入无法负担他读书的费用。所以,他到十岁时就离开了学校,回家帮父亲做蜡烛。富兰克林一生只在学校读了这两年书。十二岁时,他到哥哥詹姆士经营的小印刷所当学徒,自此他当了近十年的印刷工人,但他的学习从未间断过,他从伙食费中省下钱来买书。同时,利用工作之便,他结识了几家书店的学徒,将书店的书在晚间偷偷地借来,通宵达旦地阅读,第二天清晨便归还。他阅读的范围很广,从自然科学、技术方面的通俗读物到著名科学家的论文以及名作家的作品。   富兰克林的自学只能在晚上下班后或早晨上工之前,或是在星期日。为了更多地进行学习,富兰克林尽量减少用在其他活动上的时间。当时,他尽管认为做礼拜是人们应尽的义务,但还是常常设法从父亲的催督下躲避参加,独自一人留在印刷所,在练习写作和读书中自得其乐。在16岁那年,富兰克林偶然读到一个名叫特莱昂的人写的一本宣传素食的书,打算实行素食。当时,詹姆士尚未结婚,他和印刷所的学徒们都在另外一家包饭,富兰克林的素食使得那家人为他们备餐起来很不方便,并因此而受到哥哥的责怪。终于有一天,富兰克林向哥哥提出,把每月伙食费的一半交给他,由他自己来办理伙食,詹姆士马上就同意了。这样,富兰克林每顿饭以一块饼干或一片面包,一把葡萄干或一块果馅饼和一杯清水充饥,由此从伙食费中省出钱来买书。而且,每到吃饭的时间,詹姆士和其他人离开印刷所以后,富兰克林草草吃过东西,便可以利用剩下来的时间读书。素食使富兰克林获得了买书的钱和看书的时间,他的学习进度加快了。   就是在当学徒的这段时期里,富兰克林把在写算学校曾两度考试不及格的算术学了一遍,用的是柯克的算术书,又读了赛勒和舍尔梅的关于航海的书,从这些航海的书里,他接触到了几何学知识。他还读了洛克的《人类的悟性》和波尔洛亚尔派的作者们写的《思维的艺术》。富兰克林的学习日渐深入。   也就是在这一时期里,富兰克林在改进自己文体的同时,注意到了论证方式的改进。一次他偶然在一本英语语法书的后面发现了两篇关于修辞法和逻辑的简短介绍,其中关于逻辑的那篇在结尾时举了一个用苏格拉底对话法进行论辩的实例,他立即发生了兴趣。此后不久,他买了一部色诺芬的《苏格拉底回忆录》,加以研读。书中记载的苏格拉底运用对话法进行论辩的实例,吸引了他。从此,富兰克林放弃了自己生硬反驳和武断立论的辩论方式,而效法苏格拉底,用一个谦逊的、对事物抱有怀疑的人的口吻发问。他发现这种方法常常使自己的对手,即令是“很有学识的人”,也不得不让步,直到陷入窘境,而使自己和自己的论点获得往往是不应得的胜利。但几年以后,富兰克林又逐渐放弃了这种辩论术,而只保留了用谦虚的语句表达个人意见的习惯。在那以后,每当提出什么可能引起争论的意见时,富兰克林从不用“一定”、“无疑”等表示肯定语气的字眼,而宁愿用“我猜想”、“我料想”、“为了什么理由”,“在我看来这件事好像是”等等。后来,在富兰克林漫长的一生中,有许多场合他需要说服他人接受他的意见,而大多都如愿以偿,这恐怕是大大得益于他的论辩技巧上的研究改进。   1723年富兰克林离开了波士顿,到费城的基未尔印刷所和英国伦敦的帕尔未和瓦茨印刷厂当工人。1726年秋,富兰克林回到费城,这时他已掌握了精湛的印刷技术,开始**经营印刷所,印刷和发行《宾夕尼亚报》,并出版了《可怜的李查历书》,当时被译成十二种文字,销行于欧美各国。1727年秋,在费城他和几个青年创办了“共读社”,组织了小型图书馆,帮助工人、手工业者和小职员进行自学。每星期五晚上,论讨有关哲学、政治和自然科学等问题。这时富兰克林还不到三十岁,通过刻苦自修,已经成为一个学识渊博的学者和启蒙思想家,在北美的声誉日益提高。在富兰克林的领导下,“共读社”几乎存在了四十年之久,后来发展为美国哲学会,成为美国科学思想的中心。   1736年,富兰克林当选为宾夕尼亚州议会秘书。1737年,任费城副邮务长。虽然工作越来越繁重,可是富兰克林每天仍然坚持学习。为了进一步打开知识宝库的大门,他孜孜不倦地学习外国语,先后掌握了法文、意大利文、西班牙文及拉丁文。他广泛地接受了世界科学文化的先进成果。为自己的科学研究奠定了坚实的基础。 捕捉雷电
  1746年,一位英国学者在波士顿利用玻璃管和莱顿瓶表演了电学实验。富兰克林怀着极大的兴趣观看了他的表演,并被电学这一刚刚兴起的科学强烈地吸引住了。随后富兰克林开始了电学的研究。为集中精力从事科学研究,富兰克林把印刷所委托给了别人。富兰克林在家里做了大量实验,研究了两种电荷的性能,说明了电的来源和在物质中存在的现象。在十八世纪以前,人们还不能正确地认识雷电到底是什么。当时人们普遍相信雷电是上帝发怒的说法。一些不信上帝的有识之士曾试图解释雷电的起因,但都未获成功,学术界比较流行的是认为雷电是“气体爆炸”的观点。   在一次试验中,富兰克林的妻子丽德不小心碰到了莱顿瓶,一团电火闪过,丽德被击中倒地,面色惨白,足足在家躺了一个星期才恢复健康。这虽然是试验中的一起意外事件,但思维敏捷的富兰克林却由此而想到了空中的雷电。他经过反复思考,断定雷电也是一种放电现象,它和在实验室产生的电在本质上是一样的。于是,他写了一篇名叫《论天空闪电和我们的电气相同》的论文,并送给了英国皇家学会。但富兰克林的伟大设想竟遭到了许多人的嘲笑,有人甚至嗤笑他是“想把上帝和雷电分家的狂人”。   富兰克林决心用事实来证明一切。1752年6月的一天,阴云密布,电闪雷鸣,一场暴风雨就要来临了。富兰克林和他的儿子威廉一道,带着上面装有一个金属杆的风筝来到一个空旷地带。富兰克林高举起风筝,他的儿子则拉着风筝线飞跑。由于风大,风筝很快就被放上高空。刹那,雷电交加,大雨倾盆。富兰克林和他的儿子一道拉着风筝线,父子俩焦急的期待着,此时,刚好一道闪电从风筝上掠过,富兰克林用手靠近风筝上的铁丝,立即掠过一种恐怖的麻木感。他抑制不住内心的激动,大声呼喊:“威廉,我被电击了!”随后,他又将风筝线上的电引入莱顾瓶中。回到家里以后,富兰克林用雷电进行了各种电学实验,证明了天上的雷电与人工摩擦产生的电具有完全相同的性质。富兰克林关于天上和人间的电是同一种东西的假说,在他自己的这次实验中得到了光辉的证实。

  风筝实验的成功使富兰克林在全世界科学界的名声大振。英国皇家学会给他送来了金质奖章,聘请他担任皇家学会的会员。他的科学著作也被译成了多种语言。他的电学研究取得了初步的胜利。然而,在荣誉和胜利面前,富兰林没有骄傲,更没有停止对电学的进一步研究。1753年,俄国著名电学家利赫曼为了验证富兰克林的实验,不幸被雷电击死,这是做电实验的第一个牺牲者。血的代价,使许多人对雷电试验产生了戒心和恐惧。但富兰克林在死亡的威胁面前没有退缩,经过多次试验,他制成了一根实用的避雷针。他把几米长的铁杆,用绝缘材料固定在屋顶,杆上紧拴着一根粗导线,一直通到地里。当雷电袭击房子的时候,它就沿着金属杆通过导线直达大地,房屋建筑完好无损。1754年,避雷针开始应用,但有些人认为这是个不祥的东西,违反天意会带来旱灾。就在夜里偷偷地把避雷针拆了。然而,科学终于将战胜愚昧。一场挟有雷电的狂风过后,大教堂着火了;而装有避雷针的高层房屋却平安无事。事实教育了人们,使人们相信了科学。避雷针相继传到英国、德国、法国,最后普及世界各地。

  富兰克林对科学的贡献不仅在静电学方面,他的研究范围极其广泛。在数学方面,他创造了八次和十六次幻方,这两种幻方性质特殊,变化复杂,至今尚为学者称道;在热学中,他改良了取暖的炉子,可以节省四分之三燃料,被称为“富兰克林炉”;在光学方面,他发明了老年人用的双焦距眼镜,戴上这种眼镜既可以看清近处的东西,也可看清远处的东西。他和剑桥大学的哈特莱共同利用醚的蒸发得到负二十五度(摄氏)的低温,创造了蒸发致冷的理论。此外,他对气象、地质、声学及海洋航行等方面都有研究,并取得了不少成就。

杰出的社会活动家
  富兰克不仅是位优秀的科学家,而且还是一位杰出的社会活动家。他一生用了不少时间去从事社会活动。富兰克林特别重视教育,他兴办图书馆、组织和创立多个协会都是为了提高各阶层人的文化素质。

  正当他在科学研究上不断取得新成果的时候,由于英国殖民者的残暴统治,北美殖民地的民族解放运动日益高涨。为了民族的**和解放,他毅然放下了实验仪器,积极地站在了斗争的最前列。从1757到1775年他几次作为北美殖民地代表到英国谈判。**战争爆发后,他参加了第二届大陆会议和《**宣言》的起草工作。1776年,已经七十高龄的富兰克林又远涉重洋出使法国,赢得了法国和欧洲人民对北美**战争的支援。1787年,他积极参加了制定美国宪法的工作,并组织了反对奴役黑人的运动。

巨星陨落
  富兰克林度过的最后一个冬天是在亲人环护中度过的。他的孙女黛博罗每天喝过茶就来陪他。1790年4月8日,杰斐逊在赴联邦**国务卿之任的途中,到费城探望富兰克林,那是这位老人去世前9天。杰斐逊目睹他清晰地一气写完了他此生的最后一封信,暗自为这个年老垂危者惊人的脑力而惊叹。   1790年4月17日,富兰克林忽然起了床,请人们帮他整理一下床铺,以便让他死得像样些。他已经看到了最后时刻的来临。

  就在那天夜里11点,这位伟人溘然逝去。那时,他的孙子谭波尔和本杰明正陪在他的身边。

  4月21日,费城人民为他举行了葬礼,两万人参加了出殡队伍。码头上船下半旗,教堂钟楼里哀钟长鸣,向他最后致敬作别的礼炮声听起来也那么沉重。

  4月22日,詹姆斯.麦迪逊在参议院动议为富兰克林的逝世服丧一个月以示哀悼,被不经讨论地通过;6月11日,在巴黎的国民议会中,米拉波动议各国应为富兰克林先生之逝世哀悼三天,拉法耶特、拉.罗其福考尔德附议,议员鼓掌通过;第二年3月1日,富兰克林原来的敌人威廉.史密斯在美洲哲学学会前向路德派教堂发去一篇赞美词,赞美逝去的富兰克林。

  本杰明.富兰克林就这样走完了他人生路上的84度春秋,静静地躺在教堂院子里的墓穴中,他的墓碑上只刻着:“印刷工富兰克林”。



伏 特


  伏特于1745年出生于意大利科莫一个富有的天主教家庭里。他的父亲和一位高贵的妇女结婚之前,一直是耶稣会的一位新教徒,已有十一年之久,这位妇女也是一位宗教信仰很深的人。伏特的父亲有三位担任圣职的兄弟,有九个儿女,其中五个加入教会。伏特非常崇拜他担任副主教的兄弟和他最好的朋友、大教堂牧师加托尼。但伏特在接受耶稣会教育后,宁愿过一种世俗生活,虽然他周围的宗教社会整个说来还是快乐的,热爱生活的,而且是相当开明的。伏特和一位歌女同居了多年,但在大约五十岁时却和另一女人结了婚。他的妻子被描述为一位普通的家庭妇女,高贵、富有和聪慧。   伏特所受的教育主要是拉丁文、语言学和文学。他有时写作法文和意大利文的十四行诗以及拉丁文颂诗。他对科学的爱好似乎是自然而然发生的。十九岁时他写作了一首关于化学发现的六韵步的拉丁文小诗。他居住的科莫周围地区甚为繁华,与瑞士的交通也非常便捷。奥地利**当时信奉自由主义,因此这地区的富豪们都过着一种悠闲舒适的生活。

  伏特在青年时期就开始了电学实验,他读了他能够找到的许多书,对这工作深感兴趣。他的好友加托尼送给他一些仪器,并在家里让出了一间房子来支持他的研究。伏特十六岁时开始与一些著名的电学家通信,其中有巴黎的诺莱和都灵的贝卡里亚。贝卡里亚是一位很有成就的国际知名的电学家,他劝告伏特少提出理论,多做实验。事实上,伏特年青时期的理论思想远不如他的实验重要。随着岁月的流逝,伏特对静电的了解至少可以和当时最好的电学家媲美。不久他就开始应用他的理论制造各种有独创性的仪器,用现代的话来讲,要点在于他对电量、电量或张力(如他自己所命名的)、电容以及关系式Q=CV都有了明确的了解。

  伏特制造的仪器的一个杰出例子是起电盘。一块导电板放在一个由摩擦起电的充电树脂"饼"上端,然后用一个绝缘柄与金属板接触,使它接地,再把它举起来,于是金属板就被充电到高电势,这个方法可以用来使莱顿瓶充电。这种操作可以不断地重复。这一发明是非常精巧的,以后发展成为一系列静电起电机。伏特强烈地感到,他必须定量地测定电量,于是他设计了一种静电计,这就是各种绝对电计的鼻祖,它能够以可重复的方式测量电势差。他还为他的静电计建立了一种刻度,根据电盘的发明,根据他的描述,我们可以确定他的单位是今天的13,350伏。由于起电盘的发明,使伏特担任了科莫一些学校的物理教授(1775)。他的名声开始扩展到意大利以外,苏黎世物理学会选举他为会员. 伏特的兴趣并不只限于电学。他通过观察马焦雷湖附近沼泽地冒出的气泡,发现了沼气。他把对化学和电学的兴趣结合起来,制成了一种称为气体燃化的仪器,可以用电火花点燃一个封闭容器内的气体。他在三十二岁时去瑞士游历,见到了伏尔泰和一些瑞士物理学家。回来后他被任命为帕维亚大学物理学教授,这是伦巴第地区最著名的大学。他担任这个教授职务一直到退休,正是在那里他作出了他的划时代的发现。

  伏特于1792年去国外作另一次长途游历,这次并不限于邻近的瑞士,而是到了德国、荷兰、法国和英国。他访问了一些最著名的同行,例如拉普拉斯和拉瓦锡(1743-1794),有时还和他们共同做实验。他当时还被选为法国科学院的通迅院士,不久又被选为伦敦皇家学会的外国会员。

  伏特在四十五岁生日后不久,读到了伽伐尼1791年的文章,这促使他去作出了最大的发明和发现。他开始还有些犹豫,但不久他就开始了工作,用伏特的话说,他实验的内容"超出了当时已知的一切电学知识,因而它们看来是惊人的"。起初他同意伽伐尼用蛙做莱顿瓶的观点,但几个月后,他开始怀疑蛙主要是一种探测器,而电源则在动物之外,他还注意到,如果两种相互接触的不同金属放在舌上,就会引起一种特殊的感觉,有的是酸性的,有时是碱性的。他假定,并且也能令我们惊叹的静电测量证明,两种不同的金属例如铜和锌接触时会得到不同的电势。 他测量了这种电势差,得到的结果与我们现在所知的它们之间的接触电势差没有多大差别。至少当连接肌肉和神经的金属电弧是双金属时,只要假定蛙是一种非常灵敏的静电计,伽伐实验就到了解释。当然,伽伐尼回答说,甚至当金属电弧是单金属的时,他也能够观察到肌肉的收缩。这是一种严峻的反对意见,伏特对这些指出了金属的不纯和其他原因来为自己辨解。

  伏特对这个问题进行了更深入的研究,使他发明了伏特电堆,这是历史上的神奇发明之一。伏特发现导电体可以分为两大类。第一类是金属,它们接触时会产生电势差;第二类是液体(在现代语言中称为电解质),它们与浸在里面的金属之间没有很大的电差。而且第二类导体互相接触时也不会产生明显的电势差,第一类导体可依次排列起来,使其中第一种相对于后面的一种是正的,例如锌对铜是正的,在一个金属链中,一种金属和最后一种金属之间的电势差是一样的,仿佛其中不存在任何中间接触,而第一种金属和最后一种金属直接接触似的。

  伏特最后得到了一种思想,他把一些第一种导体和第二种导体连接得使每一个接触点上产生的电势差可以相加。他把这种装置称为"电堆",因为它是由浸在酸溶液中的锌板、铜板和布片重复许多层而构成的。他在一封写给皇家学会会长班克斯(1743-1820)的著名信件(用法文写的)中介绍了他的发明,用的标题是《论不同导电物质接触产生的电》。

  电堆能产生连续的电流,它的强度的数量级比从静电起电机能得到的电流大,因此开始了一场真正的科学革命,阿拉果在1831年写的一篇文章中谈到了对它的一些赞美:"……这种由不同金属中间用一些液体隔开而构成的电堆,就它所产的奇异效果而言,乃是人类发明的的最神奇的仪器。"他而描述了当时所知道的一切情况,我们必须记住,在1831年,电流还没有什么重要的实际应用。

  伏特最伟大的成就是在他达到相当高龄(五十五岁)时得到的,它立即引起所有物理学家的欢呼。1801年他去巴黎,在法国科学院表演了他的实验,当时拿破仑也在场,他立即下令授予伏特一枚特制金质奖章和一份养老金,于是伏特成为拿破仑的被保护人, 正如二十年前,他曾经是奥地利皇帝约瑟夫二世的被保护人一样。1804年他要求辞去帕维亚大学教授而退休时,拿破仑拒绝了他的要求,赐予他更多的名誉和金钱,并授予他伯爵称号. 拿破仑倒台后,伏特使自己与归国的奥地利人和睦相处,没有发生多少麻烦。因此他安然地度过了那个激烈变化的历史时期,无论是谁当权,他都受到了尊敬,同时他对政治毫不关心,只专心于他的研究。
伏特在完成了电堆工作后,实际上就从舞台上消失了。对他的发现的利用完全落在其他人身上。他可能是年纪太大了,无法再与年青的新生力量竞争,也可能在心理上受到了他以前的巨大成就的阻碍。他没有脱离过学校,他的工作可能太个人化了,他的著作与教学中缺乏正规的数学,可能限制了他表达自己思想的能力。伏特最后八年是在他的坎纳戈别墅和科莫附近度过的,他完全过一种隐居的生活。1827年3月5日,伏特去世,终年八十二岁。





哥白尼与日心说


  哥白尼与日心说尼古拉.哥白尼(Copernicus Nicholas),波兰一位伟大的天文学家。他以惊人的天才和勇气揭开了宇宙的秘密,奠定了近代天文学的基础。哥白尼以毕生的精力去进行天文研究,创立了《天体运行论》这一“自然科学的**宣言”。他的这些成就使他成为了人类科学发展历史上最伟大的革命家一

一. 哥白尼生平  哥白尼于1473年2月19日出生在波兰西部维斯杜拉河畔托伦城的一个商人家庭。家里兄妹四个,哥白尼是最小的。在他10岁时,父亲去世了,舅父卢卡斯承担起了抚育他的重任。

  1491年至1495年,哥白尼进入克拉科夫大学学习。克拉科夫是当时波兰的首都,也是东欧最大的贸易和文化中心,有许多国家的留学生在这里学习。由于它地处东西欧交通要冲,所以比较早地受到意大利文艺复兴的影响。因此在这座古老的大学里,新兴的资产阶级人文主义思想和腐朽的封建教会的经院哲学之间展开了激烈的斗争。哥白尼在先进的人文主义思想的熏陶下,在心灵里埋下了向经院哲学挑战的种子。在这里,他遇到了对他的一生产生深远影响的数学家和天文学家布鲁楚斯基(Brudzewski)教授。是这位教授的启蒙教育促使哥白尼决定将自己的一生奉献给天文科学。

  1496年哥白尼前往意大利求学,先后进入博洛尼亚大学、帕多瓦大学和费拉拉大学学习和研究法律、天文学、数学、神学和医学,他同时还学会了希腊文。1503年,哥白尼获得了教会法规博士学位。

  1497年,哥白尼就任瓦尔半米亚牧师的僧正。1510年后,他先后从事过管理、外交等工作。他是一个杰出的经济学家,写过《货币的一般理论》一书。他是近代第一个提出劣币淘汰良币理论的经济学家。哥白尼医术高明,他利用业余时间行医,免费为穷苦人治病,是一位颇有名望的医生,被人们誉为“神医”。哥白尼还是一位出色的数学家,他的巨著《天体运行论》附录里,发表过他的球面三角论文。   哥白尼也是一位伟大的爱国主义者,当条顿骑士团疯狂侵略波兰时,他挺身而出,起来保卫自己的祖国。1519年,条顿骑士团来犯,埃尔门兰德地区的僧侣全给吓跑了,而他却勇敢的组织和领导了奥尔兹丁城的人民奋勇反击侵略者,经过五天五夜的激战,终于打退了敌人的进攻。

  尽管哥白尼总是事务繁忙,但他始终保持冷静的头脑,把主要精力放在从事天文学的研究上。1515年,哥白尼开始写作《天体运行论》一书。1525年,哥白尼原来的女管家安娜衷心爱上了这位伟大的科学家,她不顾别人的流言蜚语,来到了被教会剥夺了结婚权利的哥白尼身边。由于她的精心照顾和帮助,才使得《天体运行论》一书的写作得以顺利进行。   1543年5月24日,伟大的波兰科学家哥白尼病逝。

二.日心地动说的提出
  自古以来,人类就对宇宙的结构不断地进行着思考,早在古希腊时代就有哲学家提出了地球在运动的主张,只是当时缺乏依据,因此没有得到人们的认可。在古代欧洲,亚里士多德和托勒密主张地心学说,认为地球是静止不动的,其他的星体都围着地球这一宇宙中心旋转。这个学说的提出与基督教《圣经》中关于天堂、人间、地狱的说法刚好互相吻合,处于统治地位的教廷便竭力支持地心学说。因而地心学说长期居于统治地位。

  随着事物的不断发展,天文观测的精确度渐渐提高,人们逐渐发现了地心学说的破绽。到文艺复兴运动时期,人们发现托勒密所提出的均轮和本轮的数目竟多达八十个左右,这显然是不合理、不科学的。人们期待着能有一种科学的天体系统取代地心说。在这种历史背景下,哥白尼的地动学说应运而生了。

  约在1515年前,哥白尼为阐述自己关于天体运动学说的基本思想撰写了篇题为《浅说》的论文,他认为天体运动必须满足以下七点:

  1、不存在一个所有天体轨道或天体的共同的中心。
  2、地球只是引力中心和月球轨道的中心,并不是宇宙的中心。
  3、所有天体都绕太阳运转,宇宙的中心在太阳附近。
  4、日地距离同天穹高度之比,就如同地球半径同日地距离之比一样渺小。地球到太阳的距离同天穹高度之比是微不足道的。
  5、在天空中看到的任何运动,都是地球运动引起的。
  6、在空中看到的太阳运动的一切现象,都不是它本身运动产生的,而是地球运动引起的。地球带着大气层,象其他行星一样围绕太阳旋转。由此可见,地球同时进行几种运动。
  7、人们看到的行星向前和向后运动,是由于地球运动引起的。地球的运动足以解释人们在空中见到的各种现象了。

  此外,哥白尼还描述了太阳、月球、三颗外行星(土星、木星和火星)和两颗内行星(金星、水星)的视运动。书中,哥白尼批判了托勒密的理论。科学地阐明了天体运行的现象,**了长期以来居于统治地位的地心说,并从根本上否定了基督教关于上帝创造一切的谬论,从而实现了天文学中的根本变革。

三.《天体运行论》
  哥白尼认识到《浅说》中的论断是假设的方式提出的,且他的模型所用数据并非亲自观测得出,放缺乏可信度。1515年,哥白尼便开始着手准备撰写《天体运行论》这一更为完整的论著。十几年来,哥白尼进行了大量的天文观测,收集了大批资料,终于在1533年完成了这部巨著的初稿,随后,他又长期进行观测、验证、修改,使得他的宇宙体系更具说服力,成为一种科学理论。

  《天体运行论》的第一卷是全书的精髓,先后论述了“宇宙是球形”、“大地也是球形”、“天体的运动是均匀永恒之圆运动或复合运动”。哥白尼说,“天体的这种旋转运动对于球来说是固有的性质,它反映了球形的特点。球这种形状的特点是简单、没有起点、也没有终点,旋转时不能将各部分相区别。而且球体形状也正是旋转作用本身造成的。”

  哥白尼赞同毕达哥拉斯学派的主张,即应当用简明的几何图象来表示宇宙的结构和天体的运行规律。在第一卷的第十章中,哥白尼正确地将行星以及地球绕日运转轨道进行排列,并刊载了他的宇宙模型图。这张我们现在看似普通的天球次序图,在当时却是人类认识宇宙的一次巨大的飞跃。

  哥白尼在《天体运行论》中还详细讲解了地球的三种运动(自转、公转、赤纬运动)所引起的一系列现象,岁差现象、月球运动、行星运动的及金星、水星的纬度偏离和轨道平面的倾角。《天体运行论》的诞生使当时所知道的太阳系内天体的位置和运状况更为完整了。

  然而,这部伟大著作的出版却经历了一个艰难而曲折的过程。

  16世纪30年代初,哥白尼的新理论已开始在欧洲流传,他的朋友们更竭力在意大利高级教会人士中传播他的新理论和观点。他们试图通过这种办法为哥白尼公布自己的学说铺平道路,从而实现当时的科学革命。在众多好友的努力下,红衣主教尼古拉.申伯格对哥白尼的学说产生了巨大的兴趣,他在1536年11月1日给哥白尼写了一封信,想了解哥白尼的学说,信中用肯定态度谈到了日心学说中的日、土、月3个天体的位置。然而这位开明的红衣主教在第二年便去世了,没能够成为哥白尼学说的庇护人。

  在《天体运行论》完成后,哥白尼却对它的出版犹豫不决了。他但心这部书出版后会遭受到地心说信徒们的攻击,并受到教廷的压制。在朋友和学生的支持鼓励下,经过长期反复的考虑,哥白尼终于决定出版这部著作。1542年,哥白尼给教皇保罗三世写了一封信,寻求教皇的庇护。他相信教皇将用自己的威严与威望保护他,令他的学说免遭谴责。然而,这一切并没有如他所愿,这封哥白尼用来做为《天体运行论》序言的信却只是起到引子的作用。

  1542年6月,《天体运行论》和排印工作开始进行,负责这本书出版事宜的奥西安德尔却按自己的意愿写了一篇没有署名的序言,说明书中的学说只是为了计算星历表之便而采用的假设,不一定和实际情况相符。这也是在《天体运行论》出版后几十年时期内很少人重视哥白尼理论的一个重要原因。哥白尼的学生雷蒂库斯对此事感到十分愤概,他曾多次要求著作的出版人发行改正版,但这些要求都未能实现。   1543年5月24日,弥留之际的哥白尼终于见到刚刚出版的《天体运行论》,可惜当时的他已经因为脑溢血而双目失明,他只摸了摸书的封面,便与世长辞了。

  由于哥白尼的学说触犯了基督教的教义,遭到了教会的反对。他的著作更是被列为禁书。但真理是封锁不住的,哥白尼的学说后来得到了许多科学家的继承和发展。1882年,罗马教皇不得不承认哥白尼的学说是正确的。这一光辉学说经过三个世纪的艰苦斗争,终于获得完全胜利并为社会所承认。

四.哥白尼的历史地位
  哥白尼是欧洲文艺复兴时期的一位巨人。他用毕生的精力去研究天文学,为后世留下了宝贵的遗产。由于时代的局限,哥白尼只是把宇宙的中心从地球移到了太阳,并没有放弃宇宙中心论和宇宙有限论。在德国的开普勒总结出行星运动三定律、英国的牛顿发现万有引力定律以后,哥白尼的太阳中心说才更加的稳固。从后来的研究结果证明,宇宙空间是无限的,它没有边界,没有形状,因而也就没有中心。虽然哥白尼的观点并不完全正确,但完全正确的是他的理论的提出给人类的宇宙观带来了巨大的变革。

  恩格斯在《自然辩证法》中对哥白尼的《天体运行论》给于了高度的评价。他说:“自然科学借以宣布其**并且好像是重演路德焚烧教谕的革命行动,便是哥白尼那本不朽著作的出版,他用这本书(虽然是胆怯地而且可说是只在临终时)来向自然事物方面的教会权威挑战,从此自然科学便开始从神学中解放出来。






皇家学会的双眼和双手——胡克  
罗伯特.胡克(Hooke Robert 1635-1703)是17世纪英国最杰出的科学家之一。他在力学、光学、天文学等诸多方面都有重大成就。他所设计和发明的科学仪器在当时是无与伦比的。他本人被誉为是英国皇家学会的“双眼和双手”。胡克生平
  胡克1635年7月18日出生于英格兰南部威特岛的弗雷施瓦特。父亲是当地的教区牧师。胡克从小体弱多病,性格怪僻,不能按时上学。但他心灵手巧,喜欢动手做机械方面的玩具。例如,木制的钟表,能在水中开动的航模等。十岁时,胡克对机械学发生了强烈的兴趣,并为日后在实验物理学方面的发展打下了良好的基础。1648年,胡克的父亲逝世后,家道中落。十三岁的胡克被送到伦敦一个油画匠家里当学徒,后来作过教堂唱诗班的领唱,还当过富豪的待从。  在威斯特敏斯特学校校长的热心帮助下,胡克修完了中学课程。几乎在一个星期里,他贪婪地读完了欧几里德的《几何原本》前六卷,并马上把数学知识应用到机械设计中去。胡克做了十二种机械结构和三十种飞行方法的设计。1653年,胡克进入牛津大学里奥尔学院学习。在这里,他结识了一些颇有才华的科学界人士。这些人后来大都成为英国皇家学会的骨干。此时的胡克热心于参加医生和学者活动小组,并且显露出独特的实验才能。1655年,胡克被推荐给玻意耳当助手,在玻意耳的实验室工作。  1663年,胡克获得了文学硕士学位,并且被选为皇家学会会员。1665年,胡克担任格列夏姆学院几何学、地质学教授,并从事天文观测工作。1666年伦敦大火后,他担任测量员以及伦敦市政检查官,参加了伦敦重建工作。  1676年,胡克发表了著名的弹性定律。1677年至1683年就任英国皇家学会秘书并负责出版会刊。早在1663年,胡克就起草了皇家学会章程草案,规定学会的宗旨是“靠实验来改进有关自然界诸事物的知识,以及一切有关的艺术、制造、实用机械、发动机和新发明(不牵涉神学、形而上学、道德、政治、语法修辞或逻辑)”。胡克作为该学会的实验工作与日常事务操办人,在长达20多年的学会活动中,接触并深入到当时自然科学活跃的前沿领域,且均做出了自己的贡献。1703年3月3日,胡克逝世于伦敦,终年68岁。力学方面的探索与发现
  胡克在力学方面贡献尤为卓著。他从1661年开始积极参加了皇家学会研究重力本质的专门委员会的活动。为了确定物体重力与地心距离的关系,他用一架精密天平放在威斯特敏斯特教堂的塔尖上,称量一块铁和一段很长的绳子的重量,然后将这块铁挂在绳子的末端再称,看是否因为铁块十分接近地面而改变重量,结果并无测出明显的改变。后来他又在旧圣保罗教堂重作了这一实验。1674年,胡克发表了《从观察角度证明地球周年运动的尝试》的论文,文中根据修正的惯性原理,从行星受力平衡观点出发,提出了行星运动的三条假设:  1.一切天体都具有倾向其中心的吸引作用或重力,它不仅吸引其本身各部分,并且还吸引其作用范围内的其它天体;  2.每一物体都保持平直、简单的运动而且继续沿直线前进,直到受到其它作用力影响,因而改变为圆、椭圆或其他曲线运动为止;  3.受到吸引力作用的物体,越靠近吸引中心,其吸引力也越大。  胡克在1679年给牛顿的信中正式提出了引力与距离平方成反比的观点,但他并没有将自己的引力思想如牛顿所作的那样用数学式子表示出来,并用太阳、地球、月亮、行星和地球上物体的运动实例来加以验证。因此,把发现万有引力定律的殊荣让给了牛顿,但胡克的某些想法对牛顿完成万有引力的研究是起着积极的启示作用的。  弹性定律是胡克最重要的发现之一,也是力学最重要基本定律之一。在现代,仍然是物理学的重要基本理论。胡克的弹性定律指出:在弹性限度内,弹簧的弹力f和弹簧的长度x成正比,即f= -kx。k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。为了证实这一定律,胡克还做了大量实验,制作了各种材料构成的各种形状的弹性体。他还进一步把弹性应用于实际问题。在宣布弹性定律的同时还进行了简谐运动的最早分析,证明了弹簧振动是等时的。由此,他把弹簧应用于钟表制造,取得了巨大成功。光学及其他方面的贡献
  胡克还对光学问题进行过研究,也取得了杰出的成绩。胡克是光的波动学说的忠实支持者,他认为光的传播与水波的传播相似,并进一步提出了光波是横波的概念。他还研究过光的干涉现象。他观察和研究了肥皂水形成的薄膜和云母片的颜色,发现它们的颜色跟薄膜的厚度和云母的厚度有关,他说“当光落在一个透明薄膜上时,薄膜的前后两表面都要发生反射,从而共同产生薄膜颜色的效应”。  1665年,胡克发表了《显微图集》一书,这是在他全部成就中最重要的一部著作,也是欧洲17世纪最主要的科学文献之一。他开始应用显微镜于生物研究,他将蜜蜂的刺、苍蝇的脚、鸟的羽毛、鱼鳞片以及跳蚤、蜘蛛、草麻等,用显微镜详细地予以考察比较。他观察到软木塞等物品的结缔组织,并使用“细孔”和“细胞”来说明,“细胞”(“cell”)一词从此被生物界直接采用。胡克的这一发现,引起了人们对细胞学的研究。现在知道,一切生物都是由无数的细胞所组成的。胡克对细胞学的发展作出了极大的贡献。  胡克通过皇家学会还进行了许多有关化学燃烧理论、呼吸、地质、地震、海洋等方面的研究。他认为燃烧和人的呼吸相似。缺乏空气,灯会熄灭;用风箱将新鲜空气有规则地注入开有小孔的狗的肺部,还能使小狗的心脏维持跳动一个多小时,说明呼吸的作用是给动物供给新鲜空气。胡克在《地震讲义》和《关于地面经常发现贝壳和共它海栖动物残骸的原因》等论著中,强烈反对圣经中的神创论。他提出了地貌变化的思想,并且认为由于地貌变化引起了生物的变化,化石则是古动物的残骸,是地球演变史中的“纪念碑”,人们可以根据这些化石,认识地球的历史。胡克在进化论出现以前提出这些观点是可贵的。卓越的仪器制造家
  胡克在仪器的制造和改进方面的特长,早在其作为玻意耳的助手时就显露出来。他协助玻意耳三次改进了真空泵。第三次改进后的抽气机已具有现代真空泵的雏形,其动力是靠司泵人用脚踏滑轮两边活塞上的蹬板来提供的。利用这一设备,玻意耳和胡克完成了气体的玻意耳定律实验。胡克改进的仪器有复式显微镜和用指针读数的轮式气压计等。他还建议用液体的凝固点及膨胀或收缩程度来作为温标刻度的根据。胡克曾经设计过一架大型的“气候钟”,用以测量和记录风力、风向、温度、压强、和湿度、降雨量等。在望远镜上他增加了目镜的叉丝、调节螺旋和光阑等。他在实验方面的创造性才能,对皇家学会初期开展的实验为基础的研究做出了巨大的贡献,被称?quot;皇家学会的台柱"。由于胡克和玻意耳对皇家学会起着积极的作用,因而人们称颂他们:“如果说玻意耳是皇家学会幕后的灵魂,那么胡克提供学会的就是双眼和双手了。”科学研究上的缺憾  胡克热爱科学事业,并为此奉献了一生。他研究的面十分广泛,如建筑、化石、气象等,他都有所涉猎和贡献。但作为科学家的素养,胡克还缺少熟练雄厚的数学与逻辑推理功力作为进行研究和思维的武器,这样便不容易从理论和实践的结合上透彻地分析与解决问题。这也是胡克与牛顿、惠更斯相比的逊色之处。



伽利略

  伽利略(1564~1642)生于意大利北部佛罗伦萨一个贵族的家庭。他在科学上的创造才能,在青年时代就显示出来了。当他还是比萨大学医科学生时,就发明了能测量脉博速率的摆式计时装置。后来,他的兴趣转向了数学和物理学,26岁就担任了比萨大学的数学教授。由于他在科学上的独创精神,不久就跟拥护亚里士多德传统观点的人们发生了冲突,遭到对手们的排挤,不得不在1591年辞去比萨大学的职务,转而到威尼斯的帕多瓦大学任教。

在帕多瓦,伽利略开始研究天文学,成为哥白尼的日心说的热烈支持者。他制造了望远镜,观测到木星的四颗卫星,证明了地球并不是一切天体运动环绕的中心。用望远镜进行观测,他发现了月面的凹凸不平以及乳带似的银河原来是由许许多多**的恒星组成的。他还制成了空气温度计,这是世界上最早的温度计。这些辉煌的成就,使他获得了巨大的声望。


1610年,伽利略接受了图斯卡尼大公爵的邀请,回到他的故乡,担当了大公爵的宫廷数学家兼哲学家。伽利略这样做的目的是希望大公爵对他的科学研究给予资助。但是不久,他就受到教会的迫害。由于他勇敢的宣传哥白尼的学说,1616年,被传唤到罗马的宗教裁判所。宗教裁判所谴责了哥白尼的学说,并责令伽利略保持沉默。1632年,伽利略发表《两种世界观的对话》一书,被教会认为违反了1616年的禁令。伽利略被召到罗马囚禁了几个月,受到缺席审判,遭到苦刑和恐吓,并被迫当众跪着表示“公开放弃、诅咒和痛恨地动学说的错误和异端”,最后被判处终身监禁,他的书也被列为禁书。


1632年以后,伽利略专心致志于力学的研究,并于1638年完成了《两种新科学的对话》。由于教会的禁令,这部书无法在意大利出版,只能在荷兰秘密刊行。这部书是伽利略最伟大和最重要的著作。伽利略首先研究了惯性运动和落体运动的规律,为牛顿第一定律和第二定律的研究铺平了道路。他坚持“自然科学书籍要用数学来写”的观点,倡导实验和理论计算相结合,用实验检验理论的推导。这种研究方法对以后的科学研究工作具有重大的指导意义。


1642年,伽利略在贫病交加中逝世,享年78岁。1983年,罗马教廷正式承认,350年前宗教裁判所对伽利略的审判是错误的。






谦逊的焦耳
  
  十八世纪,人们对热的本质的研究走上了一条弯路,“热质说”在物理学史上统治了一百多年。虽然曾有一些科学家对这种错误理论产生过怀疑,但人们一直没有办法解决热和功的关系的问题,是英国自学成才的物理学家詹姆斯·普雷斯科特·焦耳为最终解决这一问题指出了道路。
  焦耳在1818年12月24日生于英国曼彻斯特,他的父亲是一个酿酒厂主。焦耳自幼跟随父亲参加酿酒劳动,没有受过正规的教育。青年时期,在别人的介绍下,焦耳认识了著名的化学家道尔顿。道尔顿给予了焦耳热情的教导。焦耳向他虚心的学习了数学、哲学和化学,这些知识为焦耳后来的研究奠定了理论基础。而且道尔顿教诲了焦耳理论与实践相结合的科研方法,激发了焦耳对化学和物理的兴趣。
焦耳最初的研究方向是电磁机,他想将父亲的酿酒厂中应用的蒸汽机替换成电磁机以提高工作效率。1837年,焦耳装成了用电池驱动的电磁机,但由于支持电磁机工作的电流来自锌电池,而锌的价格昂贵,用电磁机反而不如用蒸汽机合算。焦耳的最初目的虽然没有达到,但他从实验中发现电流可以做功,这激发了他进行深入研究的兴趣。
  1840年,焦耳把环形线圈放入装水的试管内,测量不同电流强度和电阻时的水温。通过这一实验,他发现:导体在一定时间内放出的热量与导体的电阻及电流强度的平方之积成正比。四年之后,俄国物理学家楞次公布了他的大量实验结果,从而进一步验证了焦耳关于电流热效应之结论的正确性。因此,该定律称为焦耳—楞次定律。
  焦耳总结出焦耳—楞次定律以后,进一步设想电池电流产生的热与电磁机的感生电流产生的热在本质上应该是一致的。1843年,焦耳设计了一个新实验。将一个小线圈绕在铁芯上,用电流计测量感生电流,把线圈放在装水的容器中,测量水温以计算热量。这个电路是完全封闭的,没有外界电源供电,水温的升高只是机械能转化为电能、电能又转化为热的结果,整个过程不存在热质的转移。这一实验结果完全否定了热质说。
  上述实验也使焦耳想到了机械功与热的联系,经过反复的实验、测量,焦耳终于测出了热功当量,但结果并不精确。1843年8月21日在英国学术会上,焦耳报告了他的论文《论电磁的热效应和热的机械值》,他在报告中说1千卡的热量相当于460千克米的功。他的报告没有得到支持和强烈]的反响,这时他意识到自己还需要进行更精确的实验。
  1844年,焦耳研究了空气在膨胀和压缩时的温度变化,他在这方面取得了许多成就。通过对气体分子运动速度与温度 的关系的研究,焦耳计算出了气体分子的热运动速度值,从理论上奠定了波义耳—马略特和盖—吕萨克定律的基础,并解释了气体对器壁压力的实质。焦耳在研究过程中的许多实验是和著名物理学家威廉·汤姆生(后来受封为开尔文勋爵)共同完成的。在焦耳发表的九十七篇科学论文中有二十篇是他们的合作成果。当自由扩散气体从高压容器进入低压容器时,大多数气体和空气的温度都要下降,这一现象就是两人共同发现的。这一现象后来被子称为焦耳—汤姆生效应。
  无论是在实验方面,还是在理论上,焦耳都是从分子动力学的立场出发进行深入研究的先驱者之一。
  在从事这些研究的同时,焦耳并没有间断对热功当量的测量。1847年,焦耳做了迄今认为是设计思想最巧妙的实验:他在量热器里装了水,中间安上带有叶片的转轴,然后让下降重物带动叶片旋转,由于叶片和水的磨擦,水和量热器都变热了。根据重物下落的高度,可以算出转化的机械功;根据量热器内水的升高的温度,就可以计算水的内能的升高值。把两数进行比较就可以求出热功当量的准确值来。
  焦耳还用鲸鱼油代替水来作实验,测得了热功当量的平均值为423.9千克米/千卡。接着又用水银来代替水,不断改进实验方法,直到1878年,这时距他开始进行这一工作将近四十年了,他已前后用各种方法进行了四百多次的实验。他在1849年用磨擦使水变热的方法所得的结果跟1878年的是相同的,即为423.9千克重米/千卡。一个重要的物理常数的测定,能保持三十年而不作较大的更正,这在物理学史上也是极为罕见的事。这个值当时被大家公认为热功当量J的值,它比现在J的公认值 ——427千克米/千卡约小0.7%。在当时的条件下,能做出这样精确的实验来,说明焦耳的实验技能是多么的高超啊!
  然而,当焦耳在1847年的英国科学学会的会议上再次公布自己的研究成果时,他还是没有得到支持,很多科学家都怀疑他的结论,认为各种形式的能之间的转化是不可能的。直到1850年,其他一些科学家用不同的方法获得了能量守恒定律和能量转化定律,他们的结论和焦耳相同,这时焦耳的工作才得到承认。
  1850年,焦耳凭借他在物理学上作出的重要贡献成为英国皇家学会会员。当时他三十二岁。两年后他接受了皇家勋章。许多外国科学院也给予他很高的荣誉。虽然焦耳不地进行着他的实验测量工作,遗憾的是,他的科学创造性,特别是在物理概念方面的创造性,过早地就减少了。1875年,英国科学协会委托他更精确地测量热功当量。他得到的结果是4.15,非常接近目前采用的值1卡=4.184焦耳。1875年,焦耳的经济状况大不如前。这位曾经富有过但却没有一定职位的人发现自己在经济上处于困境,幸而他的朋友帮他弄到一笔每年200英镑的养老金,使他得以维持中等但舒适的生活。五十五岁时,他的健康状况恶化,研究工作减慢了。1878年当他六十岁时,焦耳发表了他的最后一篇论文。1878年,焦耳退休。
  焦耳活到了七十一岁。1889年10月11日,焦耳在索福特逝世。后人为了纪念焦耳,把功和能的单位定为焦耳。
  在去世前两年,焦耳对他的弟弟的说,“我一生只做了两三件事,没有什么值得炫耀的。”相信对于大多数物理学家,他们只要能够做到这些小事中的一件也就会很满意了。焦耳的谦虚是非常真诚的。很可能,如果他知道了在威斯敏斯特教堂为他建造了纪念碑,并以他的名字命名能量单位,他将会感到惊奇,虽然后人决不会感到惊奇。







天上的立法者——开普勒


  约翰.开普勒(Johanns Kepler,1571-1630),德国近代著名的天文学家、数学家、物理学家和哲学家。他以数学的和谐性探索宇宙,在天文学方面做出了巨大的贡献。开普勒是继哥白尼之后第一个站出来捍卫太阳中心说、并在天文学方面有突破性成就的人物,被后世的科学史家称为“天上的立法者”。

一.不幸的一生
  1571年12月27日,开普勒出生在德国威尔的一个贫民家庭。他的祖父曾是当地颇有名望的贵族。但当开普勒出生时,家道已经衰落,全家人就靠经营一家小酒店生活。开普勒是一个早产儿,体质很差。他在童年时代遭遇了很大的不幸,四岁时患上了天花和猩红热,虽侥幸死里逃生,身体却受到了严重的摧残,视力衰弱,一只手半残。但开普勒身上有一种顽强的进取精神。他放学后要帮助父母料理酒店,但一直坚持努力学习,成绩一直名列前茅。   1587年,开普勒进入蒂宾根大学。这时候,新的不幸又降临到他身上了,父亲病故,母亲被指控有巫术罪而入狱。生活不幸并未使他中止学业,他反而加倍努力学习。在大学学习期间,他受到天文学教授麦斯特林的影响,成为哥白尼学说的拥护者,同时对神学的信仰发生了动摇。开普勒经常在大学里和同学辩论,旗帜鲜明的支持哥白尼的立场。大学毕业后,开普勒获得了天文学硕士的学位,被聘请到格拉茨新教神学院担任教师。后来,由于学校被天主教会控制,开普勒离开神学院前往布拉格,与卓越的天文观察家第谷一起专心地从事天文观测工作。正是第谷发现了开普勒的才能。在第谷的帮助和指导下,开普勒的学业有了巨大的进步。第谷死后,开普勒接替了他的职位,被聘为皇帝的数学家。然而皇帝对他十分悭吝,给他的薪俸仅仅是第谷的一半,还时常拖欠不给。他的这一点点收入不足以养活年迈的母亲和妻儿,因此生活非常困苦。但开普勒却从未中断过自己的科学研究,并且在这种艰苦的环境下取得了天文学上的累累成果。   1611年,皇帝鲁道夫二世被其弟逼宫退位。开普勒也从此结束了御用数学家的生涯。1612年,开普勒被聘到奥地利林茨的一所大学任教兼作绘制地图的工作。由于校方拖欠薪金,开普勒一家生活拮据。1913年,开普勒的妻子病故,他又与一个贫家女子成婚,生活依然处在艰难困苦中。1618年,三十年战争爆发,开普勒被迫离开林茨,前往意大利波伦那大学任教。即使在这样颠沛流离的环境下,开普勒依然以不舍的精神和紧张的劳动去攻克天文学上的难关。

  晚年的开普勒坚持不懈地同唯心主义的宇宙论作斗争。1625年,他写了题为《为第谷 o 布拉赫申辩》的著作,驳诉了乌尔苏斯对第谷的攻击,因而受到了天主教会的迫害。天主教会将开普勒的着作列为禁书。1626年,一群天主教徒保围了开普勒的住所,扬言要处决他。后来,开普勒因为曾担任皇帝的数学家而幸免遇难。
1630年11月,因数月未得到薪金,生活难以维持,年迈的开普勒不得不亲自到雷根斯堡索取。不幸的是,他刚刚到那里就抱病不起。1630年11月15日,开普勒在一家客栈里悄悄地离开了世界。他死时,除一些书籍和手稿之外,身上仅剩下了7分尼(1马克等于100分尼)。

  开普勒被葬于拉提斯本圣彼得堡教堂,战争过后,他的坟墓已当然无存。但他突破性的天文学理论,以及他不懈探索宇宙的精神却成为了后人铭记他的最好的丰碑。 二.开普勒早期的科学研究
  早期的开普勒深受柏拉图和毕达哥拉斯神秘主义宇宙结构论的影响,以数学的和谐性去探索宇宙。他用古希腊人已经发现的五个正多面体,跟当时巳知的六颗行星的轨道套迭,从而解释了太阳系中包括地球在内恰好有六颗行星以及它们的轨道大小的原因。他把这些结论整理成书发表,定名为《宇宙的秘密》。这个设想虽带有神秘主义色彩,但却也是一个大胆的探索。

  开普勒在天文学研究方面的天赋,是被第谷独具慧眼地发现的,第谷是当时最卓越的天文观察家,他测量了无数恒星的位置和行星的运动。发现了许多新的现象,如黄赤交角的变化、月球运行的二均差,以及岁差的测定等。第谷最大的天文学成就就是发现了开普勒。第谷在临终前将自己多年积累的天文观测资料全部交给了开普勒,再三叮嘱开普勒要继续他的工作,并将观察结果出版出来。开普勒接过了第谷尚未完成的研究工作。
后来,开普勒在伽利略的影响下,通过对行星运动进行深入的研究,抛弃了柏拉图和毕达哥拉斯的学说,逐步走上真理和科学的轨道。

三.开普勒和天文学改革
  对火星轨道的研究是开普勒重新研究天体运动的起点。因为在第谷遗留下来的数据资料中,火星的资料是最丰富的,而哥白尼的理论在火星轨道上的偏离最大。开始,开普勒用正圆编制火星的运行表,发现火星老是出轨。他便将正圆改为偏心圆。在进行了无数次的试验后,他找到了与事实较为符合的方案。可是,依照这个方法来预测卫星的位置,却跟第谷的数据不符,产生了8分的误差。这8分的误差相当于秒针0.02秒瞬间转过的角度。开普勒知道第谷的实验数据是可信的,那错误出在什么地方呢?

  正是这个不容忽略的8分使开普勒走上了天文学改革的道路。他敏感的意识到火星的轨道并不是一个圆周。随后,在进行了多次实验后,开普勒将火星轨道确定为椭圆,并用三角定点法测出地球的轨道也是椭圆,断定它运动的线速度跟它与太阳的距离有关。

  1609年,开普勒出版了《新天文学》一书,提出了著名的开普勒第一和第二定律。而开普勒第三定律则是在1619年出版的《宇宙谐和论》中提出的。

  开普勒第一定律是:所有行星绕太阳运转的轨道是椭圆的,其大小不一,太阳位于这些椭圆的一个焦点上。

  开普勒第二定律这样断定:向量半径(行星与太阳的连线)在相等的时间里扫过的面积相等。由此得出了以下的结论:行星绕太阳运动是不等速的,离太阳近时速度快,离太阳远时速度慢。这一定律进一步**了唯心主义的宇宙和谐理论,指出了自然界的真正的客观属性。

  开普勒第三定律:行星公转周期的平方与行星和太阳的平均距离的立方成正比。这一定律将太阳系变成了一个统一的物理体系。

  哥白尼学说认为天体绕太阳运转的轨道是圆形的,且是匀速运动的。开普勒第一和第二定律恰好纠正了哥白尼的上述观点的错误,对哥白尼的日心说做出了巨大的发展,使"日心说"更接近于真理。更彻底地否定了统治千百年来的托勒密地心说。开普勒还指出,行星与太阳之间存在着相互的作用力,其作用力的大小与二者之间的距离长短成反比。

  开普勒不仅为哥白尼日心说找到了数量关系,更找到了物理上的依存关系,使天文学假说更符合自然界本身的真实。开普勒在完成三大定律时曾说道:“这正是我十六年前就强烈希望探求的东西。我就是为了这个目的同第谷合作的……现在大势已定!书已经写成,是现在被人读还是后代有人读,于我却无所谓了。也许这本书要等上一百年,要知道,大自然也等了观察者六千年呢!”

四.开普勒的光学成就
  不仅在天文学上,开普勒在在光学领域的贡献也是非常卓越的。他是近代光学的奠基者。他研究了小孔成像,并从几何光学的角度加以解释说明。他指出光的强度和光源的距离的平方成反比。开普勒研究过光的折射问题,认为折射的大小不能单单从物质密度的大小来考虑。例如油的密度比水的密度小,而它的折射却比水的折射大。1611年,开普勒发表了《折光学》一书,阐述了光的折射原理,为折射望远镜的发明奠定了基础。他最早提出了光线和光束的表示法,还成功地改进了望远镜。开普勒还对人的视觉进行了研究,纠正了以前人们所认为的视觉是由眼睛的发射出光的错误观点。他认为人看见物体是因为物体所发出的光通过眼睛的水晶体投射在视网膜上,并且解释了产生近视眼和远视眼的原因。

五.英雄
  开普勒所处的年代正值欧洲从封建主义社会向资本主义社会转变的时期。在科学与神权的斗争中,开普勒坚定地站在了科学的一边,用自己孱弱的身体、艰苦的劳动和伟大的发现来挑战封建传统观念,推动了唯物主义世界观的发展,使人类科学向前跨进了一大步。马克思高度评价了开普勒的品格,称他是自己所喜爱的英雄。
库  仑       
  
  电学是物理学的一个重要分枝,在它的发展过程中,很多物理学巨匠都曾作出过杰出的贡献。法国物理学家查利·奥古斯丁·库仑就是其中影响力非常巨大的一员。
  库仑在1736年6月14日生于法国昂古莱姆。库仑家里很有钱,在青少年时期,他就受到了良好的教育。他后来到巴黎军事工程学院学习,离开学校后,他进入西印度马提尼克皇家工程公司工作。工作了八年以后,他又在埃克斯岛瑟堡等地服役。这时库仑就已开始从事科学研究工作,他把主要精力放在研究工程力学和静力学问题上。
  他在军队里从事了多年的军事建筑工作,为他1773年发表的有关材料强度的论文积累了材料。在这篇论文里,库仑提出了计算物体上应力和应变的分布的方法,这种方法成了结构工程的理论基础,一直沿用到现在。
  1777年法国科学院悬赏,征求改良航海指南针中的磁针的方法。库仑认为磁针支架在轴上,必然会带来磨擦,要改良磁针,必须从这根本问题着手。他提出用细头发丝或丝线悬挂磁针。同时他对磁力进行深入细致的研究,特别注意了温度对磁体性质的影响。他又发现线扭转时的扭力和针转过的角度成比例关系,从而可利用这种装置算出静电力或磁力的大小。这导致他发明了扭秤,扭秤能以极高的精度测出非常小的力。由于成功地设计了新的指南针结构以及在研究普通机械理论方面作出的贡献,1782年,他当选为法国科学院院士。为了保持较好的科学实验条件,他仍在军队中服务,但他的名字在科学界已为人所共知。
  库仑在1785年到1789年之间,通过精密的实验对电荷间的作用力作了一系列的研究,连续在皇家科学院备忘录中发表了很多相关的文章。
  1785年,库仑用自己发明的扭秤建立了静电学中著名的库仑定律。同年,他在给法国科学院的《电力定律》的论文中详细地介绍了他的实验装置,测试经过和实验结果。
  库仑的扭秤是由一根悬挂在细长线上的轻棒和在轻棒两端附着的两只平衡球构成的。当球上没有力作用时,棒取一定的平衡位置。如果两球中有一个带电,同时把另一个带同种电荷的小球放在它附近,则会有电力作用在这个球上,球可以移动,使棒绕着悬挂点转动,直到悬线的扭力与电的作用力达到平衡时为止。因为悬线很细,很小的力作用在球上就能使棒显著地偏离其原来位置,转动的角度与力的大小成正比。库仑让这个可移动球和固定的球带上不同量的电荷,并改变它们之间的距离:
  第一次,两球相距36个刻度,测得银线的旋转角度为36度。
  第二次,两球相距18个刻度,测得银线的旋转角度为144度。
  第三次,两球相距8.5个刻度,测得银线的旋转角度为575.5度。
  上述实验表明,两个电荷之间的距离为4:2:1时,扭转角为1:4:16。由于扭转角的大小与扭力成反比,所以得到:两电荷间的斥力的大小与距离的平方成反比。库仑认为第三次的偏差是由漏电所致。
  经过了这们巧妙的安排,仔细实验,反复的测量,并对实验结果进行分析,找出误差产生的原因,进行修正,库仑终于测定了带等量同种电荷的小球之间的斥力。
  但是对于异种电荷之间的引力,用扭称来测量就遇到了麻烦。因为金属丝的扭转的回复力矩仅与角度的一次方成比例,这就不能保证扭称的稳定。经过反复的思考,库仑发明了电摆。他利用与单摆相类似的方法测定了异种电荷之间的引力也与它们的距离的平方成反比。
  最后库仑终于找出了在真空中两个点电荷之间的相互作用力与两点电荷所带的电量及它们之间的距离的定量关系,这就是静电学中的库仑定律。库仑定律是电学发展史上的第一个定量规律,它使电学的研究从定性进入定量阶段,是电学史中的一块重要的里程碑。
  磁学中的库仑定律也是利用类似的方法得到的。1789年法国大革命爆发,库伦隐居在自己的领地里,每天全身心地投入到科学研究的工作中去。同年,他的一部重要著作问世,在这部书里,他对有两种形式的电的认识发展到磁学理论方面,并归纳出类似于两个点电荷相互作用的两个磁极相互作用定律。库仑以自己一系列的著作丰富了电学与磁学研究的计量方法,将牛顿的力学原理扩展到电学与磁学中。库仑的研究为电磁学的发展、电磁场理论的建立开拓了道路。这是他的扭秤在精密测量仪器及物理学的其它方面也得到了广泛的应用。
拿破仑掌权之后,库仑又恢复了他所有的公职,他担任这些职务直到临终。
  库仑不仅在力学和电学上都做出了重大的贡献,做为一名工程师,他在工程方面也作出过重要的贡献。他曾设计了一种水下作业法。这种作业法类似于现代的沉箱,它是应用在桥梁等水下建筑施工中的一种很重要的方法。
  他还给我们留下了不少宝贵的著作,其中最主要的有《电气与磁性》一书,共七卷,于1785年至1789年先后公开出版发行。
  1806年8月23日,库仑因病在巴黎逝世,终年七十岁。
  库仑是十八世纪最伟大的物理学家之一,他的杰出贡献是永远也不会磨灭的。





诺贝尔:历史永远不会忘却的科学家


  在世界科学史上,有这样一位伟大的科学家:他不仅把自己的毕生精力全部贡献给了科学事业,而且还在身后留下遗嘱,把自己的遗产全部捐献给科学事业,用以奖掖后人,向科学的高峰努力攀登。今天,以他的名字命名的科学奖,已经成为举世瞩目的最高科学大奖。他的名字和人类在科学探索中取得的成就一道,永远地留在了人类社会发展的文明史册上。这位伟大的科学家,就是世人皆知的瑞典化学家阿尔弗雷德·伯恩哈德·诺贝尔。
  

一、艰难的成才之路


  
  诺贝尔1833年出生于瑞典首都斯德哥尔摩。他的父亲是一位颇有才干的机械师、发明家,但由于经营不佳,屡受挫折。后来,一场大火又烧毁了全部家当,生活完全陷入穷困潦倒的境地,要靠借债度日。父亲为躲避债主离家出走,到俄国谋生。诺贝尔的两个哥哥在街头巷尾卖火柴,以便**维持家庭生计。由于生活艰难,诺贝尔一出世就体弱多病,身体不好使他不能象别的孩子那样,活泼欢快,当别的孩子在一起玩耍时,他却常常充当旁观者。童年生活的境遇,使他形成了孤僻、内向的性格。
  
  诺贝尔的父亲倾心于化学研究,尤其喜欢研究炸药。受父亲的影响,诺贝尔从小就表现出顽强勇敢的性格。他经常和父亲一起去实验炸药,几乎是在轰隆轰隆的爆炸声中度过了童年。
  
  诺贝尔到了8岁才上学,但只读了一年书,这也是他所受过的唯一的正规学校教育。到他10岁时,全家迁居到俄国的彼得堡。在俄国由于语言不通,诺贝尔和两个哥哥都进不了当地的学校,只好在当地请了一个瑞典的家庭教师,指导他们学习俄、英、法、德等语言,体质虚弱的诺贝尔学习特别勤奋,他好学的态度,不仅得到教师的赞扬,也赢得了父兄的喜爱。然而到了他15岁时,因家庭经济困难,交不起学费,兄弟三人只好停止学业。诺贝尔来到了父亲开办的工厂当助手,他细心地观察和认真地思索,凡是他耳闻目睹的那些重要学问,都被他敏锐地吸收进去。
  
  为了使他学到更多的东西,1850年,父亲让他出国考察学习。两年的时间里,他先后去过德国、法国、意大利和美国。由于他善于观察、认真学习,知识迅速积累。很快成为一名精通多种语言的学者和有着科学训练的科学家。回国后,在工厂的实践训练中,他考察了许多生产流程,不仅增添了许多的实用技术,还熟悉了工厂的生产和管理。
  
  就这样,在历经了坎坷磨难之后,没有正式学历的诺贝尔,终于靠刻苦、持久的自学,逐步成长为一个科学家和发明家。
  

二、勇敢者的事业


  
  1856年,诺贝尔的父亲把他和两个哥哥留在俄国管理工厂,自己带上其他家人回国了。诺贝尔的两个哥哥致力于企业的复兴,而诺贝尔则全力以赴地投入了他所心爱的发明创造。仅仅两年多的时间里,他就完成了三项发明:气体计量仪、液体计量仪和改良型的液体压力计,这三项发明都取得了专利。尽管这些发明不太重要,但是它鼓舞了诺贝尔的信心,他决心以更大的热情投入新的发明创造。多年随父亲研究炸药的经历,也使他的兴趣很快从机械方面转到应用化学方面。
  
  早在1847年,意大利的索伯莱格就发明了一种烈性炸药,叫硝化甘油。它的爆炸力是历史上任何炸药所不能比拟的。但是这种炸药极不安全,稍不留神,就会使操作人员粉身碎骨。许多人因为意外的爆炸事件而血肉横飞,连尸体也找不到。诺贝尔决心把这种烈性炸药改造成安全炸药。1862年夏天,他开始了对硝化甘油的研究。这是一个充满危险和牺牲的艰苦历程。死亡时刻都在陪伴着他。在一次进行炸药实验时发生了爆炸事件,实验室被炸的无影无踪,5个助手全部牺牲,连他最小的弟弟也未能幸免。这次惊人的爆炸事故,使诺贝尔的父亲受到了十分沉重的打击,没有多久就去世了。他的邻居们出于恐惧,也纷纷向**控告诺贝尔,此后,**不准诺贝尔在市内进行实验。但是,诺贝尔百折不挠,他把实验室搬到市郊湖中的一艘船上继续实验。经过长期的研究,他终于发现了一种非常容易引起爆炸的物质--雷酸汞,他用雷酸汞做成炸药的引爆物,成功地解决了炸药的引爆问题,这就是雷管的发明。它是诺贝尔科学道路上的一次重大突破。
  
  诺贝尔发明雷管的时侯,正是欧洲工业革命的高潮期。矿山开发、河道挖掘、铁路修建及隧道的开凿,都需要大量的烈性炸药,硝化甘油炸药的问世受到了普遍的欢迎。诺贝尔在瑞典建成了世界上第一座硝化甘油工厂,随后又在国外建立了生产炸药的合资公司。但是,这种炸药本身仍有许多不完善之处。存放时间一长就会分解,强烈的振动也会引起爆炸。在运输和贮藏的过程中曾经发生了许多事故,针对这些情况,瑞典和其他国家的**发布了许多禁令,禁止任何人运输诺贝尔发明的炸药,并明确提出要追究诺贝尔的法律责任。面对这些考验,诺贝尔没有被吓倒,他又在反复研究的基础上,发明了以硅藻土为吸收剂的安全炸药,这种被称为黄色炸药的安全炸药,在火烧和锤击下都表现出极大的安全性。这使人们对诺贝尔的炸药完全解除了疑虑,诺贝尔再度获得了信誉,炸药工业也很快地获得了发展。
  
  在安全炸药研制成功的基础上,诺贝尔在法国又开始了对旧炸药的改良和新炸药的生产研究。两年以后,一种以火药棉和硝化甘油混合的新型胶质炸药研制成功。这种新型炸药不仅有高度的爆炸力,而且更加安全,既可以在热辊子间碾压,也可以在热气下压制成条绳状。胶质炸药的发明在科学技术界受到了普遍的重视。诺贝尔在已经取得的成绩面前没有停步,当他获知无烟火药的优越性后,又投入了混合无烟火药的研制,并在不长的时间里研制出了新型的无烟火药。
  
  诺贝尔一生的发明极多,获得的专利就有255种,其中仅炸药就达129种。他的发明兴趣不仅限于炸药,作为发明家、科学家,他有着丰富的想象力和不屈不挠的毅力。他曾经研究过合成橡胶、人造丝,做过改进唱片、电话、电池、电灯零部件等方面的实验,还试图合成宝石。尽管与炸药的研究相比,这些研究的成果不是很大,但是他那勇于探索的精神却为后人留下了深刻的印象。
  

三、流芳百世的遗愿


  
  诺贝尔把他的毕生心血都献给了科学事业,他一生过着独身生活,大部分时间是在实验室中度过的。他谦虚谨慎,对别人亲切而忠诚。他拒绝别人吹捧他,不让报纸刊登他的照片和画像。长期紧张的工作,使他积劳成疾,但在生命的垂危之际,他仍念念不忘对新型炸药的研究。1896年12月10日,这位大科学家、大发明家和实验家,由于心脏病突然发作而逝世。
  
  诺贝尔是一位名副其实的亿万富翁,他的财产累计达30亿瑞典币。但是他与许多富豪截然不同。他一贯轻视金钱和财产,当他母亲去世时,他将母亲留给他的遗产全部捐献给了慈善机构,只是留下了母亲的照片,以作为永久的纪念。他说:“金钱这东西,只要能够解决个人的生活就够用了,若是多了,它会成为遏制人才的祸害。有儿女的人,父母只要留给他们教育费用就行了,如果给予除教育费用以外的多余的财产,那就是错误的,那就是鼓励懒惰,那会使下一代不能发展个人的**生活能力和聪明才干。”
  
  基于这样的思想,诺贝尔不顾其他人的劝阻和反对,在遗嘱中指定把他的全部财产作为一笔基金,每年以其利息作为奖金,分配给那些在前一年中对人类做出贡献的人。奖金分成物理学、化学、生物学或医学、文学及支持和平事业等5份。为了纪念这位伟大的发明家,从1901年开始,每年在他去世的日子里,即12月10日颁发诺贝尔奖。
  
  诺贝尔奖不仅仅表明了这位科学家的伟大人格,而且,随着世界科学技术的飞跃发展,越来越成为世界科学技术冠军的标志。激励着越来越多的精英豪杰,献身于科学事业,去攻克一道道科学难关。同时,它也极大地促进了世界科学技术的发展和世界科学文化的交流。




汤姆生

    约瑟夫·约翰·汤姆生(Joseph John Thomson)1856年12月18日生于英国曼彻斯特郊区,父亲是苏格兰人,以卖书为业.汤姆生14岁进曼彻斯特欧文学院学习工程.1876年入剑桥大学三一学院,毕业后,进入卡文迪许实验室,在瑞利指导下进行电磁场理论的实验研究工作.1884年,年仅28岁便当选为皇家学会会员.同年末,又继瑞利之后担任卡文迪许实验室教授.
  当时,关于阴极射线的研究,有两派学说,一派是克鲁克斯、佩兰等人的微粒说,认为阴极射线是带负电的“分子流”;另一派是哥德斯坦、赫兹等人的波动说,认为阴极射线是一种电磁波.汤姆生用旋转镜法测量了阴极射线的速度,否定了阴极射线是电磁波.他又通过阴极射线在电场和磁场中的偏转,得出了阴极射线是带负电的粒子流的结论.他进一步测定了这种粒子的比荷,与当时已知的电解中生成的氢离子的荷质比相比较,他假定阴极射线的电荷与氢离子的电荷相等而符号相反,从而得出阴极射线粒子的质量约为氢原子的千分之一.他还给放电管中充入各种气体进行试验,发现其荷质比跟管中气体的种类无关.他又用铅和铁分别作电极,其结果也不改变.由此他得出结论,这种粒子必定是所有物质的共同组成成分.汤姆生把这种粒子叫做“电子”.1897年汤姆生的发现,使人类认识了第一个基本粒子,这在物理学史上是有划时代意义的.

  1906年,汤姆生由于在气体导电方面的理论和实验研究而荣获诺贝尔物理学奖.

  1940年8月30日汤姆生在剑桥逝世.







欧 姆

    乔治·西蒙·欧姆(Georg Simon Ohm,1787—1845)1787年3月16日生于德国埃尔兰根城,父亲是锁匠。父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。
  欧姆对导线中的电流进行了研究。他从傅立叶发现的热传导规律受到启发,导热杆中两点间的热流正比于这两点间的温度差。因而欧姆认为,电流现象与此相似,猜想导线中两点之间的电流也许正比于它们之间的某种驱动力,即现在所称的电动势。欧姆花了很大的精力在这方面进行研究。开始他用伏打电堆作电源,但是因为电流不稳定,效果不好。后来他接受别人的建议改用温差电池作电源,从而保证了电流的稳定性。但是如何测量电流的大小,这在当时还是一个没有解决的难题。开始,欧姆利用电流的热效应,用热胀冷缩的方法来测量电流,但这种方法难以得到精确的结果。后来他把奥斯特关于电流磁效应的发现和库仑扭秤结合起来,巧妙地设计了一个电流扭秤,用一根扭丝悬挂一磁针,让通电导线和磁针都沿子午线方向平行放置;再用铋和铜温差电池,一端浸在沸水中,另一端浸在碎冰中,并用两个水银槽作电极,与铜线相连。当导线中通过电流时,磁针的偏转角与导线中的电流成正比。实验中他用粗细相同、长度不同的八根铜导线进行了测量,得出了如下的等式: X=a/(b+x)。

式中X为磁效应强度,即电流的大小;a是与激发力(即温度差)有关的常数,即电动势;x表示导线的长度,b是与电路其余部分的电阻有关的常数,b+x实际上表示电路的总电阻。这个结果于1826年发表。1827年欧姆又在《动电电路的数学研究》一书中,把他的实验规律总结成如下公式: S=γE。

式中S表示电流;E表示电动力,即导线两端的电势差,γ为导线对电流的传导率,其倒数即为电阻。

  欧姆定律发现初期,许多物理学家不能正确理解和评价这一发现,并遭到怀疑和尖锐的批评。研究成果被忽视,经济极其困难,使欧姆精神抑郁。直到1841年英国皇家学会授予他最高荣誉的科普利金牌,才引起德国科学界的重视。

  欧姆在自己的许多著作里还证明了:电阻与导体的长度成正比,与导体的横截面积和传导性成反比;在稳定电流的情况下,电荷不仅在导体的表面上,而且在导体的整个截面上运动。







瓦 特

  瓦特(1736~1819)世界公认的蒸汽机发明家。他的创造精神、超人的才能和不懈的钻研为后人留下了宝贵的精神和物质财富。瓦特改进、发明的蒸汽机是对近代科学和生产的巨大贡献,具有划时代的意义,它导致了第一次工业技术革命的兴起,极大的推进了社会生产力的发展。

(一)1736年,瓦特出生在英国苏格兰格拉斯哥市附近的一个小镇格里诺克,他的父亲是一个经验丰富的木匠,祖父和叔父都是机械工匠。少年时代的瓦特,由于家境贫苦和体弱多病,没有受过完整的正规教育。他曾经就读于格里诺克的文法学校,数学成绩特别优秀,但没有毕业就退学了。但是,他在父母的教导下,一直坚持自学,很早就对物理和数学产生了兴趣。瓦特从六岁开始学习几何学,到十五岁时就学完了《物理学原理》等书籍。他常常自己动手修理和制作起重机、滑车和一些航海器械。1753年,瓦特到格拉斯哥市当徒工。由于收入过低不能维持生活,第二年他又到伦敦的一家仪表修理厂当徒工。凭借着自己的勤奋好学,他很快学会了制造那些难度较高的仪器。但是繁重的劳动和艰苦的生活损害了他的健康,一年后,他不得不回家休养。一年的学徒生活使他饱尝辛酸,也使他练就了精湛的手艺,培养了他坚韧的个性。  1756年,当他的身体稍有好转,瓦特再次踏上了坎坷的道路来到格拉斯哥市。他想当一名修造仪器的工人,但是因为他的手艺没有满师,当时的行会不允许。幸运的是,瓦特的才能引起了格拉斯哥大学教授台克的重视。在他的介绍下,瓦特进入格拉斯哥大学当了教学仪器的工人。这所学校拥有当时较为完善的仪器设备,这使瓦特在修理仪器时认识了先进的技术,开阔了眼界。这时,他对以蒸汽作动力的机械产生了浓厚的兴趣,开始收集有关资料,还为此学会了意大利文和德文。在大学里,他认识了化学家约瑟夫·布莱克和约翰·鲁宾逊等。瓦特从他们那里学到了很多科学理论知识。1764年,瓦特与表妹玛格丽特·米勒结了婚。

  (二)1764年,学校请瓦特修理一台纽可门式蒸汽机,在修理的过程中,瓦特熟悉了蒸汽机的构造和原理,并且发现了这种蒸汽机的两大缺点:活塞动作不连续而且慢;蒸汽利用率低,浪费原料。以后,瓦特开始思考改进的办法。直到1765年的春天,在一次散步时,瓦特想到,既然纽可门蒸汽机的热效率低是蒸汽在缸内冷凝造成的,那么为什么不能让蒸汽在缸外冷凝呢?瓦特产生了采用分离冷凝器的最初设想。  在产生这种设想以后,瓦特在同年设计了一种带有分离冷凝器的蒸汽机。按照设计,冷凝器与汽缸之间有一个调节阀门相连,使他们既能连通又能分开。这样,既能把做工后的蒸汽引入汽缸外的冷凝器,又可以使汽缸内产生同样的真空,避免了汽缸在一冷一热过程中热量的消耗,据瓦特理论计算,这种新的蒸汽机的热效率将是纽可门蒸汽机的三倍。从理论上说,瓦特的这种带有分离器冷凝器的蒸汽机显然优于纽可门蒸汽机,但是,要把理论上的东西变为实际上的东西,把图纸上的蒸汽机变为实在的蒸汽机,还要走很长的路。瓦特辛辛苦苦造出了几台蒸汽机,但效果反而不如纽可门蒸汽机,甚至四处漏气,无法开动。尽管耗资巨大的试验使他债台高筑,但他没有在困难面前怯步,继续进行试验。当布莱克知道瓦特的奋斗目标和困难处境时,他把瓦特介绍给了自己一个十分富有的朋友--化工技师罗巴克。当时罗巴克是一个十分富有的企业家,他在苏格兰的卡隆开办了第一座规模较大的炼铁厂。虽然当时罗巴克已近50岁,但对科学技术的新发明仍然倾注着极大的热情。他对当时只有三十来岁的瓦特的新装置很是赞许,当即与瓦特签订合同,赞助瓦特进行新式蒸汽机的试制。  从1766年开始,在三年多的时间里,瓦特克服了在材料和工艺等各方面的困难,终于在1769年制出了第一台样机。同年,瓦特因发明冷凝器而获得他在革新纽可门蒸汽机的过程中的第一项专利。第一台带有冷凝器的蒸汽机虽然试制成功了,但它同纽可门蒸汽机相比,除了热效率有显著提高外,在作为动力机来带动其他工作机的性能方面仍未取得实质性进展。就是说,瓦特的这种蒸汽机还是无法作为真正的动力机。  由于瓦特的这种蒸汽机仍不够理想,销路并不广。当瓦特继续进行探索时,罗巴克本人已濒于破产,他又把瓦特介绍给了自己的朋友、工程师兼企业家博尔顿,以便瓦特能得到赞助继续进行他的研制工作。博尔顿当时经四十多岁,是位能干的工程师和企业家。他对瓦特的创新精神表示赞赏,并愿意赞助瓦特。博尔顿经常参加社会活动,他是当时伯明翰地区著名的科学社团“圆月学社”的主要成员之一。参加这个学社的大多都是本地的一些科学家、工程师、学者以及科学爱好者。经博尔顿的介绍,瓦特也参加了圆月学社。在圆月学社活动期间,由于与化学家普列斯特列等交往,瓦特对当时人们关注的气体化学与热化学有了更多的了解,为他后来参加水的化学成分的争论奠定了基础。更重要的是,圆月学社的活动使瓦特进一步增长了科学见识,活跃了科学思想。  瓦特自与博尔顿合作之后即在资金、设备、材料等方面得到大力支持。瓦特又生产了两台带分离冷凝器的蒸汽机,由于没有显著的改进,这两台蒸汽机并没有得到社会的关注。这两台蒸汽机耗资巨大,使博尔顿也濒临破产,但他仍然给瓦特以慷慨的赞助。在他的支持下,瓦特以百折不挠的毅力继续研究。自1769年试制出带有分离冷凝器的蒸汽机样机之后,瓦特就已看出热效率低已不是他的蒸汽机的主要弊病,而活塞只能作往返的直线运动才是它的根本局限。1781年,瓦特仍然在参加圆月学社的活动,也许在聚会中会员们提到天文学家赫舍尔在当年发现的天王星以及由此引出的行星绕日的圆周运动启发了他,也许是钟表中的齿轮的圆周运动启发了他。他想到了把活塞往返的直线运动变为旋转的圆周运动就可以使动力传给任何工作机。同年,他研制出了一套被称为“太阳和行星”的齿轮联动装置,终于把活塞的往返的直线运动转变为齿轮的旋转运动。为了使轮轴的旋轴增加惯性,从而使圆周运动更加均匀,瓦特还在轮轴上加装了一个火飞轮。由于对传统机构的这一重大革新,瓦特的这种蒸汽机才真正成为了能带动一切工作及的动力机。1781年底,瓦特以发明带有齿轮和拉杆的机械联动装置获得第二个专利。  由于这种蒸汽机加上了轮轴和飞轮,这时的蒸汽机在把活塞的往返直线运动转变为轮轴的旋转运动时,多消耗了不少能量。这样,蒸汽机的效率不是很高,动力不是很大。为了进一步提高蒸汽机的效率,增大蒸汽机的效率,瓦特在发明齿轮联动装置之后,对汽缸本身进行了研究,他发现,他虽然把纽可门蒸汽机的内部冷凝变成了外部冷凝,使蒸汽机的热效率有了显著提高,但他的蒸汽机中蒸汽推动活塞的冲程工艺与纽可门蒸汽机没有不同。两者的蒸汽都是单项运动,从一端进入、另一端出来。他想,如果让蒸汽能够从两端进入和排出,就可以让蒸汽即能推动活塞向上运动又能推动活塞向下运动。那末,他的效率就可以提高一倍。1782年,瓦特根据这一设想,试制出了一种带有双向装置的新汽缸。由此瓦特获得了他的第三项专利。把原来的单项汽缸装置改装成双向汽缸,并首次把引入汽缸的蒸汽由低压蒸汽变为高压蒸汽,这是瓦特在改进纽可门蒸汽机的过程中的第三次飞跃。通过这三次技术飞跃,纽可门蒸汽机完全演变为了瓦特蒸汽机。
  从最初接触蒸汽技术到瓦特蒸汽机研制成功,瓦特走过了二十多年的艰难历程。瓦特虽然多次受挫、屡遭失败,但他仍然坚持不懈、百折不回,终于完成了对纽可门蒸汽机的三次革新。使蒸汽机得到了更广泛的应用,成为改造世界的动力。
  1784年,瓦特以带有飞轮、齿轮联动装置和双向装置的高压蒸汽机的综合组装取得了他在革新纽可门蒸汽机过程中的第四项专利。1788年,瓦特发明了离心调速器和节气阀;1790年,他又发明了汽缸示工器,至此瓦特完成了蒸汽机发明的全过程。

  (三)1785年,瓦特被当选为英国皇家学会会员。1814年,他被法国科学家学会接纳为外国会员。  1790年以后,优厚的专利税使瓦特成为一个很有钱的名人。1819年8月5日,瓦特在希思菲尔德郡的家里去世,遗体埋葬在汉德沃尔斯郊区的教堂里。  瓦特生活在十八、十九世纪的英国,所以在他的身上不可避免的带有时代和阶级的局限。他曾经阻挠双筒蒸汽机和高压蒸汽机的发明和推广,还嘲笑别人用蒸汽机来驱动车辆的努力。
  总的来说,瓦特为蒸汽机的推广使用做出了不可磨灭的重要贡献、有力的推动了社会的前进。恩格斯在《自然辨证法》中这样写道:“蒸汽机是第一个真正国际性的发明……瓦特个它加上了一个分离的冷凝器,这就使蒸汽机在原则上达到了现在的水平。”后人为了纪念这位伟大的发明家,把功率的单位定为“瓦特”。
一条幽径,曲折迂回中总会激起心旷神怡的向往;一波巨澜,潮起潮落时更能叠出惊心动魄的鸣响;一个故事,遗憾悲婉里还有肝肠寸断的凄凉;一种人生,跌宕困顿中方现惊世骇俗的豪壮。
回复

使用道具 举报

132

主题

12

精华

5万

积分

圣徒

耕战
10009
鹰币
1090
天龙币
0
回帖
4763

特级翔鹰勋章一级帝国勋章第二届火箭筒杯最佳战役第三届火箭筒杯最佳战役雄鹰勋章

附庸关系0
发表于 2005-8-6 21:09:34 | 显示全部楼层
貝克勒耳呢?
You'll never walk alone!
回复

使用道具 举报

36

主题

0

精华

77

积分

骑士

耕战
-2
鹰币
1
天龙币
0
回帖
247
附庸关系0
 楼主| 发表于 2005-8-6 22:04:52 | 显示全部楼层
<b>A<FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">.</FONT><FONT>H</FONT><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">.贝克勒尔博士</FONT><FONT></FONT></b><P align=center><B><FONT><FONT style="mso-spacerun: yes">  </FONT></FONT></B> <P 2em; TEXT-ALIGN: justify"><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">“如果你认真阅读他人论文,把论文中的研究成果用于自己的研究领域,那么,也许你就能得到获诺贝尔奖的机会。”</FONT> <P 2em"><FONT><FONT style="mso-spacerun: yes">  </FONT></FONT> <P 2em"><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">第二次世界大战快结束的时候,美国在日本广岛市投放了原子弹,我的姐姐在市内受到原子辐射的伤害,患了白血病。姐姐的不幸迫使全家人翻阅了许多与放射线有关的读物,我就是从这些读物中得知物质放射性的发现者贝克勒尔博士的。</FONT> <P 2em"><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">贝克勒尔是法国著名的实验物理学家。他曾经在光学、磁学等方面进行过大量研究工作。例如,他曾对某些磷光晶体在红外线照耀下的光释放进行研究,研究晶体及其他有关物质对光的吸收,特别是研究光对偏振平面及其传播方向的依赖性。一次,他看到伦琴博士发现</FONT><FONT>X</FONT><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">射线的论文,一下子被这篇论文吸引住了。长期对光的研究使他无论如何也无法摆脱这样一个念头:“既然阴极线通过放电管遇到荧光屏能使荧光屏发亮,最终导致</FONT><FONT>X</FONT><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">射线的产生,那么,如果我用太阳光代替阴极线,照到一种也可以出现荧光的物质上,也许会产生类似</FONT><FONT>X</FONT><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">射线的新放射线。”</FONT> <P 2em"><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">说干就干。贝克勒尔把一种铀化物作为荧光物质放在用黑纸包着的胶片感光板上,然后用日光照射,不出所料,显像后果然照下了铀化物的结晶像。后来,有一次他无意中将铀化物放进了存有感光板的抽屉里,几天后,底片洗出来一看,底片上仍然清楚地显示出铀化物的结晶像,结果与日光照射完全一样。</FONT> <P 2em"><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">开始,贝克勒尔有些失望:“如果和日光毫无关系,那我的推论就是不正确的,太遗憾了。”但紧接着他又想:“那么究竟是什么东西将铀化物照到感光板上去的呢?莫非是铀化物本身发出的光么?”一种新的推论产生了。</FONT> <P 2em"><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">于是,他对各类铀化物和矿石中的铀进行了定量研究,果然,除一种矿石外,铀的含量与其放射性成正比。这样,贝克勒尔得出了铀具有天然放射性</FONT></FONT><a href="https://rcs.wuchang-edu.com/Resource/GZ/GZHX/HXBL/RBEBFSM/20000054ZW_0010.htm#_ftn1" target="_blank" ><FONT style="VERTICAL-ALIGN: super; COLOR: blue"><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">①</FONT></FONT></A><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">的结论。</FONT><FONT>1903</FONT><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">年,他因发现了物质的放射性而获诺贝尔物理学奖。</FONT> <P 2em"><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">他为什么能获诺贝尔奖?</FONT> <P 2em"><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">许多科学家都非常注重前人的论文,然后举一反三地进行各种推论,这也是从事研究工作必不可少的条件之一。但是,他们为什么都没有获奖?就是贝克勒尔也不过是极为偶然地将铀化物作为荧光物质使用,后来又碰巧将其放在了有感光板的抽屉里,才发现了铀的放射性,而且他凭借前人的论文推测出来的推论也是错误的。</FONT> <P 2em"><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">但我要指出的是,假如你也碰到了与贝克勒尔一模一样的偶然现象时,你会怎样考虑呢?你是不是能做出与他一模一样的思考呢?</FONT> <P 2em"><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">幸运女神对每一个人微笑着,只是我们没有发现而已。只有那些平日里总想着“这样做试试看,那样做不知行不行”的人,才能受到女神的垂青,回报便是诺贝尔奖。</FONT> <P 2em"><B><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">无意中将铀和感光底片放在一起,发现了铀射线,获诺贝尔奖。</FONT><FONT></FONT></B> <P align=center><FONT></FONT> <P 2em"><B><FONT><FONT style="mso-spacerun: yes">  </FONT></FONT></B><FONT>1852</FONT><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">年生于法国。</FONT><FONT> 1872</FONT><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">年就读巴黎理工大学,后在公路桥梁学校毕业,获工程师职位。</FONT><FONT>1878</FONT><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">年在巴黎自然博物馆任物理学教授,</FONT><FONT>1895</FONT><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">年任理工大学教授。因发现物质的放射性而获</FONT><FONT>1903</FONT><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">年诺贝尔物理学奖。</FONT><FONT>1908</FONT><FONT style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">年逝世。</FONT>
一条幽径,曲折迂回中总会激起心旷神怡的向往;一波巨澜,潮起潮落时更能叠出惊心动魄的鸣响;一个故事,遗憾悲婉里还有肝肠寸断的凄凉;一种人生,跌宕困顿中方现惊世骇俗的豪壮。
回复

使用道具 举报

本版积分规则

排行榜|小黑屋|翔鹰帝国

GMT+8, 2024-12-23 23:58 , Processed in 0.124922 second(s), 41 queries , File On.

Powered by Hawk Studio  QS Security Corp.® Licensed

Copyright © 2001-2023, Hawkaoe.net All Rights Reserved

快速回复 返回顶部 返回列表